
Module 8 Educational environments for
CT: design and aspects of
integration

Author: University of Turku (Finland)
Peter Larsson
Ashok Veerasamy

Reviewers:
Panagiotis Kosmas (CARDET),
Mart Laanpere (TLN)
Vaida Masiulionytė-Dagienė (VU)

External reviewers:
Andreas Mühling (Germany),
Filiz Kalelioğlu (Turkey)

Piloting:
CARDET (Cyprus), University of Turku (Finland), Vilnius University (Lithuania)

Design (icons):
Vaidotas Kinčius (Lithuania)

Module outline is based on the work within the project “Future Teachers Education: Computational Thinking and STEAM”
(TeaEdu4CT). Coordination: Prof. Valentina Dagienė, Vilnius University, Lithuania. Partners: Vienna University of Technology
(Austria), CARDET (Cyprus), Tallinn University (Estonia), University of Turku (Finland), Paderborn University (Germany),
CESIE (Italy), Radboud University (Netherlands), KTH Royal Institute of Technology (Sweden), Ankara University (Turkey).
The project has received co-funding by the Erasmus+ Programme KA2.

TeaEdu4CT project (grant no. 2019-1-LT01-KA203-060767) 2019 license granted.

Educational environments for CT: design and
aspects of integration Module 8

Contents

General overview and aim 3

Target group and prerequisites 3

Learning Outcomes (LOs) and Assessment Methods 6

Module plan and didactical approaches 7

Units and activities 9

Assessment requirements and assessment strategy 55

Implementation ideas 57

References 57

2

Educational environments for CT: design and
aspects of integration Module 8

General overview and aim
This module is about how to create educational environments that support the integration of
Computational Thinking (CT) with Science, Technology, Engineering, Arts and Mathematics
(STEAM). The educational environments provide technology that scaffold the application of
CT. STEAM education merges the liberal arts with STEM (Science, Technology, Engineering
and Mathematics) to make the ensemble of subjects approachable for a wider student
population and to foster creativity. While arts provide context and creativity for STEM
application, CT affects how the subjects are practiced. CT is seen here as a general attitude and
skill set that supports the integration of methods from computer science to the disciplinary
practices.

The three perspectives (mathematics, engineering, and science) on Computer Science (CS)
combined with a model of CT are used as a framework in this module. The framework aids the
teacher in designing the use of educational technology to support the integration of CT and
STEAM. Each perspective provides a way to integrate CT with corresponding subject.
Technology (T in STEM) subject is here interpreted to be covered by the engineering
perspective. The students learn to plan educational technology support using the three
perspectives. In the course project students form teams to create a design for a learning
intervention where CT integrated with STEAM is supported by educational technology. The
role of arts (A in STEAM) in the design of the learning intervention is to give context, create
engagement and allow room for creativity.

This module is intended for future teachers of STEAM subjects.

Target group and prerequisites
The target group consists of prospective teachers in STEM, STEAM or one of the STEAM
subjects.

There are no prerequisites except for good knowledge of own primary subject(s) and
pedagogical studies.

However, basic knowledge of programming is an asset.

Keywords

instructional design, educational technology, computational thinking, STEM, STEAM

Related competence frameworks

3

Educational environments for CT: design and
aspects of integration Module 8

The contents of this module promote the following competences of the DigCompEdu
competence model (competences not covered are excluded; see Module 1 Unit 3 (Valentina
Dagiene) for complete description of the model):

1. Professional engagement
1.3. Reflective practice To individually reflect on, critically assess and

actively develop one's own digital pedagogical
practice and that of one's educational community.
This module provides an explicit framework to think
about using digital educational technology in the
context of teaching CT and STEAM.

2. Digital Resources
2.1. Selecting digital

resources
To identify, assess and select digital resources for
teaching and learning. To consider the specific
learning objective, context, pedagogical approach, and
learner group, when selecting digital resources and
planning their use.
There are many educational technologies and
therefore in this module the emphasis is to learn to
recognize patterns that indicate possibilities to utilize
a particular technology.

2.2.Creating and modifying
digital resources

To modify and build on existing openly-licensed
resources and other resources where this is permitted.
To create or co-create new digital educational
resources. To consider the specific learning objective,
context, pedagogical approach, and learner group,
when designing digital resources and planning their
use.
Even though the basic educational technologies
already exist there is usually a need to modify them to
fit the intended purposes. In this module students learn
first to plan the application of the technology and then
how to implement it.

3. Teaching and Learning
3.1. Teaching To plan for and implement digital devices and

resources into the teaching process, so as to enhance
the effectiveness of teaching interventions. To
appropriately manage and orchestrate digital teaching
interventions. To experiment with and develop new
formats and pedagogical methods for instruction.
To succeed the application of educational technology
must be embedded in the context of the topic and
support the activities leading to learning. The
practical part of this module is about integrating the
educational technology with teaching and learning.

4

Educational environments for CT: design and
aspects of integration Module 8

3.4. Self-regulated learning To use digital technologies to support self-regulated
learning processes, i.e. to enable learners to plan,
monitor and reflect on their own learning, provide
evidence of progress, share insights and come up with
creative solutions.
This module presents a theory which the prospective
teacher can use to create innovative instructional
designs that support self-regulated learning. The
educational technology used should scaffold the
learning but not provide readymade solutions that
stifle creativity and take away the joy of discovery.

4. Assessment
4.1. Assessment strategies To use digital technologies for formative and

summative assessment. To enhance the diversity and
suitability of assessment formats and approaches.
The educational technologies for CT and STEAM are
aimed to support arriving at solutions either by
creating or discovering. The results are created step at
a time and therefore formative assessment can be
applied. The result is usually more than the sum of its
parts and therefore it is also fit for summative
assessment.

5. Empowering Learners
5.3.Actively engaging

learners
To use digital technologies to foster learners' active
and creative engagement with a subject matter. To use
digital technologies within pedagogic strategies that
foster learners' transversal skills, open learning to new,
real-world contexts, involve learners themselves in
hands-on activities, scientific investigation and
complex problem solving, or in other ways that
increase learners' active engagement and creative
expression.
This point could be a description of why liberal arts
was added to STEM subjects. The CT perspective of
the different subjects supports the application of
digital technologies.

6. Facilitating Learners' Digital Competence
6.5.Digital problem solving To incorporate learning and assessment activities

which require learners to identify and solve technical
problems or to transfer technological knowledge
creatively to new situations.
Computational thinking is at its core a
problem-solving method. It opens the possibility to
apply information technology to form a solution. By
creating interesting and engaging problems the
teachers transfer their knowledge to their students.

5

Educational environments for CT: design and
aspects of integration Module 8

Learning Outcomes (LOs) and Assessment Methods

A successful learner will… Assessment Methods
recognize opportunities for applying CT
in STEAM topics (analysis)

Peer review of a plan (based on PRADA)
describing how CT could be applied to
STEAM topic(s)

be able to choose appropriate educational
technology supporting CT in STEAM
(application)

Peer review of a plan (based on CT
Perspectives for STEAM framework) of how
to choose right technology supporting
learning of STEAM topic(s)

be capable of designing a CT and STEAM
based learning intervention using
educational technology (creative)

Lecturers’ assessment of instructional design
project report and presentation

6

Educational environments for CT: design and
aspects of integration Module 8

Module plan and didactical approaches
This module is an elaboration of the Code, Connect and Create (3C) professional development
model (Jocius et al., 2020) which is aimed to support teachers in integration of disciplinary
content and CT principles. Coding is here generalized to use of educational technology
supporting CT and the disciplinary is interpreted in context of STEAM. 3C uses the PRADA
model of CT (Dong et al., 2019) whose principles are defined in terms suitable for teachers
which are not well versed in computing. While familiar vocabulary is good it might leave out
knowledge that is part of the CT contextual background. In this module we sharpen the
PRADA model concepts by introducing mathematics, engineering, and science perspectives of
CS to aid in its application.

Unit outline

Unit activities

ECTS 1 = 27 hours (in Finland)

7

Educational environments for CT: design and
aspects of integration Module 8

Unit 1 - Three computer science perspectives
Lecture
Introducing the three perspectives of computer science: 90 min

Activity 1.1 Homework
Looking at own topic from one of the computer science perspectives: 60 minutes

Unit 2 – CT Perspectives for STEAM framework

Lecture
CT Perspectives for STEAM framework: 90 minutes

Activity 2.1 Homework
Description of own topic using CT Perspectives for STEAM: 60 minutes

Activity 2.2 Homework
Three peer reviews: 90 minutes

Unit 3 – Choosing educational technologies based on CT Perspectives

Lecture
Educational technology for CT perspectives: 90 min

Activity 3.1 Homework
Planning educational technology support for own topic: 2 hours

Activity 3.2 Homework
Three peer reviews: 90 minutes

Unit 4 – Creating instructional content for CT integrated STEAM

Lecture
STEAM Teaching Model 1/2: 90 min

Activity 4.1
Course project part 1/2: 5 hours

Activity 4.2
Team discusses the plan with the supervisor: 30 min

Unit 5 – Designing the learning environment for CT integrated STEAM

Lecture
STEAM Teaching Model 2/2: 90 min

Activity 5.1
Course project 2/2: 5 hours

8

Educational environments for CT: design and
aspects of integration Module 8

Unit 6 – Project presentations

Activity 6.1
Team presentations 2 hours

Units and activities

Unit 1 - Three computer science perspectives

One challenge with CT is that it fits STEM topics very well. It seems to be part of them, but if
it is naturally already there where is the contribution (Pears, 2019). CT could be said to be the
ability to spot opportunities for methods and tools from Computer Science (CS) combined with
the knowledge of how they could be applied. For this to be possible a computational thinker
would also need familiarity with CS which is in line with Wing’s (2006) thoughts. However,
there is no consensus of what CS is, instead it can be said to consist of three major
perspectives: math, engineering, and science (Tedre, 2018). This seems to be fortunate because
it already incorporates the views of STEM subjects (technology (T in STEM) subject is here
interpreted to be part of the engineering view). In this unit CS is introduced through the lenses
of the three perspectives.

CS is a young science. The first department was established 1962 in Purdue university. With
the help of CS, computers and associated technology have developed fast from the first
computer ENIAC in 1945, 1800 square feet (167 square meters) of floor space, to billions of
interconnected mobile phones 2020, which fit in their owners’ pockets. Before 1990 the
research in the field could be divided into Computer engineering which focused on hardware,
Computer science (meaning the theoretical part of CS) which investigated programming and
Information systems which was about the business use of computers. After 1990 two more
subfields emerged. Software engineering investigated the production of software. Enterprise
information technology focused on managing and supporting organizational use of information
technology. The number of research areas in CS is growing, from 12 in 1996 to 26 in 2005.
Even though the field seems to be diverging there are also something common to all. CS is a
unique combination of mathematics, engineering, and science.

Mathematics

The word computer in CS referred originally to a profession where the task was to perform
calculations according to a given plan. Usually, the result of a single computer was combined
with others to form the intended outcome. Even though mathematical proficiency was required
from the human computers to calculate correctly the work was otherwise mostly mechanical.
The computation had been split into clearly specified calculations which were repetitive in their
nature. This was quite different from the work of mathematician who investigates properties of

9

Educational environments for CT: design and
aspects of integration Module 8

mathematical systems or their applications. Mathematicians planned how the computers should
do their work. The first computer machine was created to provide additional computing
capacity. Some of the human computers continued as programmers of the machine.

Mathematics is central to CS and it can be said to form the theory of computing. The different
fields of mathematics provide the concepts and methods needed in computations. A
mathematical model of a general-purpose computing machine was invented before its physical
counterpart. Different kinds of mathematical aids and computing machines have a long history
and their own technical evolution. It was only by the invention of the modern computer
(machine) that it can be said that the theoretical and practical merged. The theoretical model of
a computer was made for mathematical purposes to find out if it could be deduced if a formula
would deliver a result or not. The question was raised by a giant in mathematics David Hilbert
and answered by a 24-year-old British student Alan Turing.

The question raised by Hilbert called for a solution to the Entscheidungsproblem (German,
“decision problem”). The challenge was to device a general method that allowed to calculate if
a formula in first order logic vas valid, in other words that it was provable. For this to be
possible an explicit definition of the steps of the calculation, an algorithm, was needed. Turing
set out to solve the problem by making a computational model of calculating with pen and
squared paper. Instead of multiple lines on a paper the calculation could be made on a single
infinite line. It was enough to use the numbers zero and one since any value could be encoded
using several of those numbers. Only one digit per square was allowed and the calculation was
made one square at the time. A human can rely on his mental faculties to calculate, but here
those were substituted with explicit rules. The result was a description of a machine with an
infinite squared paper tape, a reading/writing head and rules that controlled its execution (see
Figure 1).

10

Educational environments for CT: design and
aspects of integration Module 8

Figure 1. The Turing machine consisted of an infinite squared paper tape, a reading/writing
head and rules that controlled its execution. The rules in the picture describe an algorithm to
check if the number of ones is odd or even.

The rules were central in Turing’s machine. Each rule had an identifier and different versions
depending on the content of the square under the reading/writing head. A rule could control the
reading/writing head to write a symbol, move a step to the left, right or stay still on the tape.
The rule also defined the next rule. With the rules and the machinery any calculation could be
defined unambiguously. One other invention was that a group of rules could have common
identifier which allowed for modularity were already defined calculation could be reused.
Turing used this feature to define a machine that could simulate any other Turing Machine
(TM) if its description were written on the imaginary paper tape. The universal machine
allowed Turing to prove that a machine that could check if the other machine produced a result
was impossible. This meant that there is no general procedure by which one could calculate if
the formula is valid.

When Turing was about to publish his findings in 1936, he discovered that the American
Alonzo Church had beat him to it. Church used different kind of computational model, which
was based on functions and simplification. Turing’s article was published anyway because of
the uniqueness of his method, but he published later an addendum where he acknowledged that
Church was first. In the addendum he also described a TM that implemented Church’s
computational model. Both models were equal in computational capacity. Around the same
time several other computational models were invented which differed in the way the
computation was executed. They were all equal in capacity and the thesis is that they defined
the limits of what can be calculated.

Models of computation preceded the invention of the modern computer, but many of the ideas
that are in use today can be said to have been thought of in relation to formalizing calculation in
mathematics (Davis, 2015). The TM for instance incorporated the idea of a programming
language (rules), modularity, program and data in the same memory, virtual machine and
interpreter. Turing came up also with the idea of distributed computing where a Turing machine
could receive a part of the solution from an outside source. The Turing machine was a
mechanization of how a human calculates, so it wasn’t only theoretically but also intuitively a
model of computation. A sign of importance of Alan Turing work is the A. M. Turing Award
issued by the Association for Computing Machinery (ACM) which is one of the two leading
CS associations in the world. The Turing machine is still used for formal proofs in theoretical
CS.

Besides computation mathematics provides CS with the mathematical systems that are the
objects of computations. One could therefore think of CS as a branch of mathematics (Tedre,
2018). When it comes to researching properties of formal systems and using these formalisms
to investigate other systems it is without a doubt mathematics. However, when it comes to
implementing computational models in forms of computer machines there is also the question
of physical implementation. What started as electrical engineering evolved to the independent
fields of computer engineering which built the technology and software engineering which
defined how to control it. Computer science combines theory building with practical
application.

11

Educational environments for CT: design and
aspects of integration Module 8

Engineering

Besides mathematics also engineering is central to CS. The first computers were built in
universities and from that practical work the science was formed. Engineering can be defined
generally to be: “…discipline of using scientific and technical knowledge to imagine, design,
create, make, operate, maintain, and dismantle complex devices, machines, structures, systems,
and processes that support human endeavour.” (Blockley, 2012, p. xi). The first computer was
built to provide more computing capacity for calculating gun firing-tables during World War II
in United States. Every new gun needed a table of approx. 3000 values, and it took one month
to calculate the numbers for a hundred human computers. It took the same time with a human
operated mechanical differential analyser which there were at the time three of in whole USA.
The army collaborated with Moore School of Electrical Engineering in producing the tables
and they had together two analysers and a two hundred human computers. Still, they couldn’t
produce the tables fast enough to keep pace with the gun development.

The need for computing capacity created the idea for a fully electronical calculating machine at
the Moore School. The army agreed to finance the idea and in 1943 started the project to create
the Electronic Numerical Integrator and Computer (ENIAC). The design of ENIAC took
inspiration of how calculations was distributed to the human computers and how the differential
analyser combined partial results. To avoid slowdown in the operation ENIAC was to be fully
electronic. Vacuum tubes were used to present control units, arithmetic circuits and store the
numbers ENIAC was operating on. Like current computers ENIAC was designed to be general
purpose (mathematically), but it had a distributed design with several calculating units and used
decimal representation. The project finished in December 1945. ENIAC was a thousand times
faster than the best of the competing calculation methods of that time.

ENIAC was a success both technically and operationally, but programming was very difficult.
The length of ENIAC was thirty meters and it consisted of forty units. Each unit was controlled
by a switchboard and additionally the different units needed to be connected by pluggable
wiring in accordance with the planned steps of the calculation. The team behind ENIAC came
up with a design for a new kind of computer in collaboration with the mathematician John von
Neumann. In 1945 a preliminary report with only von Neumann’s name on it was circulated
which described the design for a new computer. The design got the name von Neumann
architecture and todays computers still follow it. It describes the computers main components
and how they interact with each other, the technical details are up to the implementer (which
can be a reason for its longevity).

von Neumann architecture described the design for a machine which consisted of input unit,
arithmetic/logic unit, control unit (in modern computers logic/arithmetic and control is in a
single central processing unit), memory and output unit. The different units were connected via
a parallel bus (see Figure 2). The computer was controlled by commands which resided in the
memory with the data. Both commands and data were represented with binary numbers that is a
series of zeroes and ones. The use of just zeroes and ones were technically very economical
compared to decimal representation. Commands were executed sequentially which concerned
both handling of data and control of the computer. On the material level the computer
commands are just group of computer components having a certain charge which can affect the
operation of other components. Abstractly the commands form a description of the intended

12

Educational environments for CT: design and
aspects of integration Module 8

computation based on a computational model. In between the material and the abstract is a
liminal artefact, the physical representation of the program to be executed (Dasgupta, 2016).

Figure 2. (CC BY-SA 3.0) 1 von Neumann architecture describes the modern computers main
components and how they interact with each other. The main components are the input unit,
central processing unit (CPU), main memory, and output unit.

The first implementations of von Neumann architecture were in United Kingdom. Mark I was
ready in April 1949 at the Manchester University and only a month later EDSAC (Electronic
Delay Storage Automatic Calculator) was finished at Cambridge. The development of EDSAC
was a joint venture between a private company and the university. J. Lyons & Company was
Britain’s biggest catering company which depended on a huge finance department to keep the
company profitable. They were always looking for technical aids to improve the mechanical
part of the finance operation and they had heard of the new computer. The deal was that they
financed the development of EDSAC and later the university would help them build their own
computer. J. Lyons & Co. computer was called LEO (Lyons Electronic Office) and they used it
for wages, orders, and shipping management, and for managing the manufacturing of their tea
blends. LEO was the first business application of computing and to commemorate this the
Association for Information Systems (AIS) gives the LEO Award to outstanding scholars in the
field of information systems.

There were possibilities for many kinds of implementations since the von Neumann
architecture only described the computer’s general organization. At the time, the people who
built computers were electrical engineers. It required ingenuity to take inventions developed for
other purposes and repurpose them to build computers. Programming was an integral part of
von Neumann architecture. It was possible to choose if a feature was implemented in hardware
or by programming. Maurice Wilkes which was one of the designers of EDSAC invented
microprogramming which was a set of programs which made the job of programmers easier
since the programs could be used as higher-level commands to control the computer. The

1 By W Nowicki - Own work, based on a diagram which seems to in turn be based on page 36 of The Essentials of
Computer Organization and Architecture By Linda Null, Julia Lobur,
https://books.google.com/books?id=f83XxoBC_8MC&pg=PA36, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=15258936

13

Educational environments for CT: design and
aspects of integration Module 8

specialization of Computer Engineering (CE) started to emerge in Electrical Engineering (EE)
departments at universities in step with the more widespread use of computers and evolution of
computer specific technology.

Modern CE is about the design, construction, implementation, and maintenance of software and
hardware components of computing systems, computer-controlled equipment, and networks of
intelligent devices. CE started as a combination of EE and CS. It has evolved over the past four
decades as an independent discipline, but EE and CS are still its reference disciplines. Even
though CE started with designing core components of computers very few engineers are today
involved with these. Through the miniaturization of computer technology this has become
highly specialized area. The miniaturization of silicon devices, increased reliability and
complete systems on chip have made computers ubiquitous and replaced many conventional
electronic devices. Computer engineers are needed in making of smart phones, tablets, wireless
networks and other digital products. Through embedded systems they also work with
automobiles, household appliances, consumer electronics and lately developing the internet of
things. While ACM was more for the theoretical computer scientists Institute of Electrical and
Electronics Engineers (IEEE) Computer society is more for the technology-oriented researchers
of computing.

Programming controls the operation of the computer and without the programs’ computers
wouldn’t function. Computers were created for mathematical calculations, but in parallel with
their physical development, hardware, also the programs running on the computer, software,
evolved. Other uses for software were invented, and these made the programs grow.
Mathematical methods weren’t enough to handle the complexity of programming and this
phenomenon came to be called the software crisis. NATO arranged a conference in 1968 and
another 1969 about how to manage software complexity where methods from engineering
sciences were proposed. This was a start for a new field called Software Engineering (SE). A
modern definition of SE is given by the IEEE: “The application of a systematic, disciplined,
quantifiable approach to the development, operation and maintenance of software; that is, the
application of engineering to software.” (IEEE, 2010).

Software engineering is about methods, tools, and management of software development. The
main challenge is complexity: how to structure the program code to make development more
manageable, allow several people to work at the product at the same time and how to
coordinate this activity. Procedures and functions were the first methods to structure code,
ideally the first one changes the computers state and the other one returns a result; both can be
called from other parts of the program. Object-oriented programming is a way to build the
program from independent components. Each object can have several methods which is an
abstraction of procedures and functions that is they can behave either way. Design patterns took
inspiration from architecture to describe a general pattern of interacting objects that solve a
particular problem. In general, architecture is also used as a term to describe the overall
principle of how the software is structured.

By making software more modular the task of programming can be divided between several
people. It is important that the behaviour of a component is agreed on since other parts of the
software may rely on it. This is also a source of error when changes are made to an existing part
of the program. Modern development environments allow to search for dependencies between
different parts of the software. They also help in showing the general structure of the software

14

Educational environments for CT: design and
aspects of integration Module 8

and highlighting the different classes of commands the program consists of. Modern software
projects are large, and several people are needed to develop them. Version control system help
to manage the different parts and versions of the software in development. There are two major
strategies to manage the software development project. One is called the waterfall method
where the development is progressing in stages of requirements, design, development,
verification, and maintenance. The other type of development is called agile where the
development progresses in iterations and features are added to the whole in each iteration. It is
said that waterfall method is preferable in larger projects and agile method is better when the
project is small to medium or when there is uncertainty of the final feature set.

The engineering view is about the technical building of both computer hardware and software.
Our current digital society is the result of technical development from the start of the computer
era. This development has happened in universities, but also in many companies whose
products have made the digital revolution possible. Theoretical work has been important part of
the development. Especially in the beginning many things wouldn’t have been possible if not
theoretical methods had been developed to get the most out of existing technologies. When the
principle was invented then it was possible develop it further. Both the theoretical and technical
started from the same origin modelling of human calculation. With this modelling came the
idea of simulating human intelligence. Here computing is used as a theory of intelligence and
its example of the scientific perspective of CS.

Science

The science perspective is about CS as empirical research like in the natural sciences where
there are objective phenomena that is investigated. It is distinct from the mathematical
perspective which concerns the theoretical aspect of CS and engineering which is about
building hardware and software. Science can be described by the techniques of
experimentation, observation and theory construction (Okasha, 2016). Not all fields can use
experimentation e.g. astronomy, but there needs to be a way to gather data to validate the
theories. In 1956 a summer school in Dartmouth, USA was held for researchers interested in a
new topic of CS, Artificial intelligence (AI). The research of AI was based on the idea that: “…
every aspect of learning or feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it.” (McCarthy et al., 2006, p. 2). Here CS is used in a
scientific way to describe an outside phenomenon.

AI allowed CS to participate in the interdisciplinary research of the mind named Cognitive
science. The mind is a complex topic that combines research areas of many sciences:
philosophy, psychology, linguistics, anthropology, neuroscience, and computer science. The
theoretical model of computation and the computer gave the other sciences tools to model and
simulate what happens in the mind. It can be said that Cognitive science was born the same
year as AI in a seminar at MIT (Miller, 2003). The famous linguist Noam Chomsky described
what kind of capacity is needed to produce language. He compared Turing Machine (TM) with
machines of lesser capability to show that to produce language a system equal to TM is needed.
Georg Miller showed that a human can handle a maximum of seven things at a time in working
memory, but through grouping the amount of information can be raised. Allen Newell and
Herbert Simon introduced Logic theorist (also presented at Dartmouth) which was a program

15

Educational environments for CT: design and
aspects of integration Module 8

that could prove mathematical theorems. Logic theorist used heuristic algorithms which
simulated how a human reason’s when faced with uncertainty.

Another important application of CS to the study of the mind was based on the idea that
neurons of the brain could be interpreted as performing logical functions by Warren S.
McCullough and Walter Pitts (Bermúdez, 2020). The brain has 86 billion neurons, each neuron
can have over 10 000 connections and together they form a large network. We know that the
neurons communicate by electric signals and this activity can be monitored. Neuroscience has
been able to map activity in different brain areas to cognitive functions. But what the activity
means, that is what kind of representation (assumedly) is used, is still unknown. McCulloch
and Pitts work gives a mechanism where artificial neurons operate on values of 0 and 1 like a
computer. This allows a computer to simulate the operations of a neural network. Artificial
neural networks have made it possible to model the operation of the brain, simulate cognitive
functions and make intelligent software. It is the existence of target phenomena and related
research results to compare with that decides if a simulation is science or engineering.

CS can be described as the study of natural and artificial information processes (Denning,
2007). Information Systems (IS) as research of business or in general organisational use of
computers combine both views. An organisation can be interpreted as a system of interacting
processes that produces the products or services to fulfil its purpose (Checkland & Holwell,
1998). Every process needs information to operate and produces information that other
processes may rely on. In addition, information is needed to manage and coordinate the system.
Information systems was born out of the need to plan and design the use of information
technology to support the information needs of the organisation. This is the design side of IS,
but there is also a behavioural one whose reference science is sociology (Hevner et al., 2004).
IS as a science is research about how people create and use information to enable the operation
of the organisation. Also, how information technology impacts organisational functions is
another area of research.

AI and IS both contain research that relate to outside phenomena and where empirical methods
are used. But there is also an idea that the combination of theoretical and engineering
perspectives of CS could be seen as empirical science. To qualify the research should be
rigorous and the methods used should equal those in natural sciences. From the literature one
can find five major views on experimental CS (Tedre & Moisseinen, 2014): feasibility, trial,
field, comparison, and controlled experiment.

Feasibility Experiment concerns new techniques and tools. The aim is to explore if a task can
be automated cost-efficiently, efficiently, feasibly, reliably, or by meeting some other simple
criteria. The method of the experiment is a demonstration that it can be done. A Trial
Experiment goes further than feasibility and aims to evaluate if a system confirms to its
specification or how well it performs. Its performance is evaluated against a set of predefined
variables. The experiment is usually laboratory based but can be also conducted in an actual
context if one takes into account the lesser control of the environment. The last option is also
the setting for a Field Experiment where the aim is to test the system in use. Here the
contingencies of the real environment are part of the experiment. The aim is to test the
performance, usability, or robustness of the system. These kinds of experiments are used often
in the field of information systems where success is measured by benefits in practice.

16

Educational environments for CT: design and
aspects of integration Module 8

In many branches of CS, one is looking for solution with the best performance. It can concern
use of resources, speed, completeness, quality of service or some other factor where one can
judge if a result is better or worse. These are called Comparison Experiments where the
purpose is to evaluate if one solution is better than the another when the experiments are made
under the same conditions. Controlled experiment can be said to be the gold standard of science
and it can also be used in CS context. It means that care is taken to control all the affecting
factors. The simplest type has positive and negative controls, which are usually sufficient to
eliminate uncertainty with variables. The controls mean that negative and positive results are
produced when expected.

CS and the ubiquity of computing technology has also changed sciences like other parts of the
society. The Nobel laureate Wilson (1989) wrote about the use of computers for science which
he called Computational Science. He recognized that there are alongside the traditional
experimental and theoretical research now a third method computational research. However
also experimental and theoretical methods have changed because of the possibilities of modern
computing (Denning, 2017a). Experimental science is about collecting data through
observations and experiments to confirm or reject a hypothesis. Computers allows the handling
and analysis of large data sets. Since the availability of computer resources have grown
massively in the recent years the scientist doesn’t have to settle anymore for statistical analyses
of samples but can analyse the whole data set. In theoretical science the scientist builds
mathematical models to explain what is known and uses the models to make hypothesis of
possible phenomena. Computers help in calculating the equations the models are based on. The
use of computers has not changed the fact that both data and models (theory) are needed to
make science.

Using computers to accelerate experimental and theoretical research is a revolution on its own
(Denning, 2017a). However, computation has more potential. Instead of static models one can
build dynamic simulations that enact the processes that are described. This allows for exploring
things that can’t be observed or allows to see the consequences of complex interacting systems.
These systems couldn’t be calculated since there are too many variables for equations, but one
can build the components and let the computer handle the interaction. In AI computation was
used to simulate human information processing. It seems that also other natural processes can
be interpreted as information processes (Denning, 2017a). Information processes receive input
and produce output. A computer is particularly suitable tool for calculating these kinds of
results. CS is the scientific research of computer technology; it can be used to understand the
workings of human intelligence and organisations and it is a great tool for the other sciences.
However, to be a science the scientific method must be followed even if it is tailored to the
characteristics of CS.

Summary

There is clear evidence for the three perspectives of CS. Mathematics provide the theory of
computing by giving an explicit and rigorous definition of an algorithm that is the bases of all
computations (see Table 1.1. second column from the left). This allows to explore what
problems can be solved by computation using mathematics. Computers expand the possibilities
of mathematics by allowing handling of large quantities of data and big complexity that would
not be feasible to do manually. Our digital society is the result of development of information

17

Educational environments for CT: design and
aspects of integration Module 8

technology by computer and software engineering. The engineering side of computing is
constantly finding new application areas by exploring what tasks can be accomplished by
controlling information technology (see Table 1.1. third column from the left). Information
technology is used scientifically to simulate human intelligence and as a model for information
processing in organisations. Many scientific phenomena are too big to be understood by
traditional means. The mechanisms that lead to some phenomena are not always observable and
here computers can be used to simulate the possible causes. Scientifically computational
processes can be used to understand phenomena that without computing wouldn’t be accessible
(see Table 1.1. fourth column from the left).

Table 1.1. Three perspectives of Computer Science

Mathematics Engineering Science
Object models of computation computer and software

technology
natural and artificial
information
processes

Method calculations and proofs electronics, computer
technology and
programming

empirical research,
computational
models, simulations

Knowledge possibilities/limits of
computation

how to design and
produce both hardware
and software

computational
interpretation of
phenomena

Question What problems can be
solved by computation?

What tasks can be
accomplished by
controlling information
technology?

What phenomena
can be understood as
computational
processes?

Lecture - Introducing the three perspectives of computer science

Using the text above
● Mathematics: what problems can be solved by computation
● Engineering: what tasks can be accomplished by controlling information technology
● Science: what phenomena can be understood as computational processes

Activity 1.1 Homework - Looking at own topic from one of the computer science
perspectives

18

Educational environments for CT: design and
aspects of integration Module 8

Write a short essay (200 words) based on an internet search or/and auxiliary material provided
by the teacher describing how an example related to your own subject utilises computer
science. You can use the CS perspectives as an aid in your search (see above Table 1.1).

Unit 2 – CT Perspectives for STEAM framework

Here the perspectives of computer science are combined with computational thinking to design
computational support for STE(A)M education. The three perspectives where mathematics,
engineering, and science, which all answer to different type of question.

Questions answered by the three CS perspectives:
● Mathematics: What problems can be solved by computation?
● Engineering: What tasks can be accomplished by controlling information technology?
● Science: What phenomena can be understood as computational processes?

The PRADA model (Dong et al., 2019) for computational thinking was devised to be a
practical way to integrate computational thinking in K-12 education. The aim was to give an
understandable picture what computational thinking is. The PRADA acronym consists of
Pattern Recognition, Abstraction, Decomposition and Algorithms. Here we elaborate on the CT
concepts of PRADA and see how the CS perspectives affect the interpretation.

PRADA model:
● Pattern Recognition observing and identifying patterns, trends, and regularities in data,

processes, or problems
● Abstraction identifying the general principles and properties that are important and

relevant to the problem
● Decomposition breaking down data, processes, or problems into meaningful smaller,

manageable parts
● Algorithms developing step by step instructions for solving [a problem] and similar

problems

Pattern recognition

Patterns are here interpreted in two ways mathematical and technical. Mathematics is said to be
“the queen of sciences” because it provides the concepts that are used to form theories. The
technical interpretation of pattern covers both engineering and technology. The difference is in
the stage of development from design to product. Mathematical patterns (Devlin, 1994; Kvasz,
2019) describes regularities in a field of mathematics which can be defined with a small set of

19

Educational environments for CT: design and
aspects of integration Module 8

facts and rules. From these facts and rules one can derive logically all the other concepts of the
field (Devlin, 2012). Here we use patterns to make explicit the often very abstract mathematical
concepts we are using in our computations. Technically in the context of computational
thinking patterns are about controlling computers, electronics, and embedded systems. The
requirement is that the operation of the target system can be described with discrete electric
states and transitions between them. In both mathematical and technical views, the first step
towards a solution is to recognize the patterns that frame the problem.

Learning mathematics can be seen as an analogy of learning a language (Sfard, 2007). Without
the language, we wouldn’t be able to access the abstract objects of mathematics and their
properties. Keywords in mathematical discourse signify the objects. For instance, we use
numbers to stand for quantity and shapes for geometric objects. The keywords also describe
relationships between the objects like equality, inequality, similarity, equivalence, etc. Every
subfield of mathematics has their own keywords, but one field can use the keywords and
objects of another if they are part of its constitution. When we talk about mathematical objects,
we use words, but for visual communication we use a system of symbols which are much more
succinct and effective. The system of symbols includes digits, algebraic and logical notations,
and formulas. The symbols function also as cognitive aids. We can also visualize the structures
that the objects and their relations form like geometric drawings and graphs. Diagrams make
possible to show visually the results of formulas and functions with different inputs.

Every subfield of mathematics is described by a system of facts and rules that define its objects.
A new mathematical definition must be proven to be deducible from the system. A proof is a
narrative about the objects and the relationships between them that form a definition. The
narrative is accepted or rejected by mathematicians of the subfield depending how well it
adheres to the established understanding of the mathematical system in question. Sometimes
the existing system can be changed if the new definition is of a fundamental kind, but these
occasions are rare. The narratives use axioms, definitions, claims and proofs to establish new
findings. The language of mathematics is formal and rests on a routinized way of talking about
objects of interest. One important type of routine are the actions on the mathematical objects.
Examples of these routines are calculating, problem solving, validating, and proving.

The mathematical objects and their relationships can be said to form a pattern. The pattern is a
basis for our calculations and gives us the vocabulary to discuss about the mathematical field.
Usually, the pattern is not the core of the mathematical system, but a consequence of it. We
have been taught the concepts and their relationship in mathematics lessons or books and
practiced them by doing calculations. Given a problem we can use the patterns to recognize if a
subfield of mathematics would help in solving it. Here we use mathematical theory of numbers
better known as arithmetic (see Figure 2.1). to illustrate a mathematical pattern.

20

Educational environments for CT: design and
aspects of integration Module 8

Figure 2.1. Addition, multiplication, subtraction, and division of arithmetic can be visualized to
show quantitative patterns related to the symbolic operations.

The American National Research Council’s Framework for K-12 Science Education (NRC,
2012) lists developing models, data analysis and, mathematical and computational thinking
among the eight central scientific and engineer practices. The framework is repeated in the
American Next Generation Science Standards (NGSS Lead States, 2013) which combines the
practices so that mathematical representations (models) are used to support scientific
conclusions and digital tools (computational thinking) for analysis of large data sets. Also,
frameworks like Computational thinking in mathematics and science taxonomy (Weintrop et
al., 2016) and Elements of Computational Thinking Integration from a Disciplinary Perspective
(Malyn-Smith et al., 2018) emphasize the use of models and data as important part of scientific
practice. Modelling and data analysis can be interpreted as recognizing patterns.

The most common meaning of a model is a representation of an idea, object, event, process, or
system that is created for a specific purpose (Gilbert and Boulter, 1998). The basic
characteristics of a model are:

● It represents some part of the system being modelled and the aspects chosen reflects the
interest of the modeller. A model is a human creation, and it doesn’t exist in the natural
world.

● The same reality can be represented by multiple models, depending on the features that
are interesting to whomever is creating the model.

In science a model can be seen as a representation of a system, which is made up of set of
objects and their properties or variables (Gutiérrez & Pintó, 2005). The model depicts the laws
of the system that defines the behaviour of the objects or the relationships between object
variables. The essential function of a model is to explain and predict. Scientific models are also

21

Educational environments for CT: design and
aspects of integration Module 8

representations to reason with (Justi & Gilbert, 2002). Models are often mathematical, but they
are on higher abstraction level than plain mathematical concepts. Instead of a mathematical
subfield’s basic objects and operations the models combine them in formulas to describe the
phenomena of interest. A mathematical model can be thought of as an imaginary and simplified
version of the part of reality being studied where exact calculations are possible (Gowers,
2002). Newtonian mechanics is an example of this kind of model (see Figure 2.2).

1) ∑ 𝐹 = 0⇔ 𝑑𝑣
𝑑𝑡 2) 𝐹 = 𝑑𝑝

𝑑𝑡 = 𝑑(𝑚𝑣)
𝑑𝑡 3) 𝐹

𝐴
= − 𝐹

𝐵

Figure 2.2. Newtonian mechanics is another name for classical mechanics in physics. Isaac
Newton laid the foundation for classical mechanics by defining the three laws of motion: First
law defines that an object stays still or continues it movement if not affected by an outside force
(1), Second law defines that the sum of the forces affecting an object is the mass of the object
multiplied by its acceleration (2) and Third law defines that when one object exerts a force on
another the second object exerts an equal force on the first one. These laws are examples of
scientific patterns in physics.

The previous picture of science is based on the idea that a description of a phenomena can be
simplified to a degree that an exact calculation can be used to extract information from
identified variables. Not all phenomena can be described this neatly for instance the common
features of some human population, weather trends, economic forecasts or the spread of disease
include variations that have to be accounted for. Instead of discrete and exact values we have
large amounts of data where the objects in a category can have different values for the same
variables. All phenomena are not static so the collected values can vary depending on the
moment of measurement. Data can also be used for predictions and besides the prediction itself
it is informative to estimate how certain or probable the result is. Statistical models are used to
handle variation and uncertainty in data. The aim is to get an understanding of what the data
means or entails.

Statistical inquiry can be said to be a process containing of five phases: problem, planning,
data, analysis and conclusion (Wolff et al., 2016; Wild & Pfannkuch, 1999). First the purpose
of the inquiry is identified and what are the relevant questions related to it. The planning starts
with hypothesis formulation, that is what kind of results are assumed. Then a plan is made that
describes what kind of data could confirm or reject the hypothesis. Also, the possible sources of
data and how they can be obtained are listed. In the data-phase the data is collected or acquired.
Here one must take into account the quality of the data and possible ethical concerns like
consent, anonymization and different kind of permissions. One of the central phases in the
process is data analysis where the results are gathered, and explanations based on them are
created. Finally, the validity of the explanation is evaluated, and possible new questions based
on the results are created. There are many methods and tools to base the data analysis on, here
we use the common statistical measures like arithmetic mean and standard deviation as
examples (see Figure 2.3).

1) 𝐴 = 1
𝑛

𝑖=0

𝑛

∑ 𝑎
𝑖

=
𝑎

1
+𝑎

2
+⋯+𝑎

𝑛

𝑛 2) σ =
∑(𝑥

𝑖
−µ)2

𝑁

22

Educational environments for CT: design and
aspects of integration Module 8

Figure 2.3. Basic statistical measures like Arithmetic mean and standard deviation give
summaries of the patterns found in numerical data. Arithmetic mean describes the average
value of an attribute in a data set (1). Standard deviation describes how the much the values of
the attributes differ from the average in the data set (2).

Different branches of engineering utilize the patterns of mathematics and science in their work.
In the context of computational thinking there are also technical patterns related to control and
automation of electrical, electronical, and computational devices. To control an electrical
device computationally it has to be a computer, or it has to have the electronics to communicate
with one. In simple cases the device could use electronics for automation and control, but for
more complex needs it is easier to add computational capacity than to try to build it with just
electronic components. Computers and electronics work in discrete states which means that
some electrical charge or current is either on or off. This doesn’t mean that the device has to be
static. A state can be that a motor is running or even accelerating. A model can be made to
describe the states controlling or automating a device.

A model of control or automating mechanism of a device needs a start state, transitions
between states, inputs that controls the transitions. This kind of model is called a state machine
or a finite state machine (FSM) since the number of states are limited (see Figure 2.4). The
FSM is simplest computational model that have a memory. Combinational logic is simpler
since it can just calculate a result, but because it lacks memory it can’t handle states. An FSM
changes states by transitioning to a next state when it receives an input. Usually depending on
the state of the machine the number of possible transitions is limited, and different states can
have different transitions. FSM is defined by the list of states, the initial state and the inputs
that trigger transitions. Even though the modelling formalism is simple a wide variety of
devices can be modelled. The FSM is an abstraction, it describes the results of the operations of
the device, not the actual mechanics.

Figure 2.4. A simple Finite State Machine (FSM) describing a system consisting of a switch
and a light bulb. The FSM describes the states of the light bulb while the switch changes states.
Flipping the switch up turns the light on and flipping the switch down turns the light off. The
default or start state is light off and the switch is down.

Models of FSM can get very complex if there are many inputs and states since every
combination have to be modelled. Statecharts where devised by Harel (1987) to make

23

Educational environments for CT: design and
aspects of integration Module 8

modelling of a FSM easier (see Figure 2.5). Statecharts employ different graphical means to
make a state machine model easier to interpret: clusters, default-states, and-states, and
history-connector (Thimbleby, 2007). If an input triggers a state transition to a group of states
that are complementary, then these can visually be clustered inside a node. The state which is
always first in a group of states can be marked as a default-state. If several states have
something in common, but differs in some aspect, then this can be modelled with an and-state.
Visually an and-state is a cluster that is divided in two which allows a combination of substates.
Sometimes the last state in a state cluster needs to be remembered and this can be marked with
a history-connector. If a history-connector is attached to a state cluster then an additional star
after the cluster name could mark that it is one of the states inside the cluster that is meant.

Figure 2.5. A statechart describing the operation of the user interface of a simple microwave
oven. The interface consists of a timer dial (0-30) and setting for the power level (low-high).
The arrows marked with s in the middle of the picture describe setting the time as changing
states and the arrows marked with p the change of time by a time pulse. Using statechart
formalism simplifies the description of the combination of two state hierarchies by allowing
them to change separately. The power level remembers (H) its last state in the hierarchy.

Abstraction

The patterns described above of mathematics, science, engineering/technology are examples of
abstractions. The mathematical objects don’t exist in reality but are product of our minds. The
philosopher Karl popper distinguished between three levels of human experienced reality the
physical world, the world of our thoughts and the non-material creations of our culture.
Mathematics is culturally created (Hersh, 2014), it has been developed for millennia and
disseminated through teaching and writing. Science uses mathematical and statistical models to
make exact description of the phenomena of interest. Since the models are usually a
combination of basic operations and is named after the phenomena depicted, we can say that
they are on a higher abstraction level than plain mathematics. Engineering/technology used
state machines from computer science as an abstraction to describe how a device works. State

24

Educational environments for CT: design and
aspects of integration Module 8

machines do not describe how devices operate; they model the results of operations. In general,
to abstract something is to leave out details or group details that are related under a descriptive
label.

Mathematics, science, and engineering/technology all employ abstractions. Abstraction is also
central concept in CS (Kramer, 2007) and therefore also in CT (Wing, 2006). However, CS/CT
requires thinking on multiple levels of abstraction, often two levels at the same time. One
example of levels of abstraction used in CS education context is a four-level hierarchy by
Perrenet et al. (2005): problem, object, program, and execution (see list below). The levels in
the hierarchy are describing different interpretations of an algorithm in programming. At the
problem level an algorithm is the change required from inputs to outputs. The inputs are based
on the patterns that frame the problem. Object level is thinking about the general steps of the
algorithm that are needed to transform the inputs to the outputs. On a program level the
algorithm is implemented in a programming language. The programming language is a
high-level description of the operation of a computer or a computational model. The execution
level is the physical operation of the computer. Here we have taken the steps from a pattern that
is in the context of the problem area to defining an algorithm to solve the problem and its
solution as a program executable on a computer. CT is the ability to perform this process.

Abstraction levels of algorithms Perrenet et al. (2005):
● Problem level: change from inputs to outputs
● Object level: algorithm (high-level) description
● Program level: implementation of the algorithm in a programming language
● Execution level: the running of the machine

Decomposition

Decomposition is about how to break down a problem into manageable parts. In CT context the
aim is to find an algorithm that would solve the problem. Before decomposition, a problem is
only known as a black box with inputs, outputs, and possible relationships to other problems.
The black box depicts the innerworkings of the problem that are yet unknown. To find out the
inner function, the problem is broken down into multiple subproblems. Each subproblem can
be treated as a problem that needs to be unpacked to its component parts. Finally, an atomic
level is reached where there are no more subproblems. A solution can be devised based on the
identified components of the problem. One can approach the solution top-down, first handling
the top-level problems, or bottom-up, first solving the atomic problems.

The decomposition process contains two kind of actions (Rich et al., 2019). The first,
substantive decomposition, is to differentiate and categorize the parts (subproblems) of the
problem. The second, relational decomposition, is to find relationships between the
subproblems. In substantive decomposition one must choose a principle that is used to break
the problem in to parts. The principle is dependent on the problem statement and context. The
separate subproblems provide information that wasn’t accessible while combined. When
subproblems have been identified one can start to assign relations between them. Prior to this
phase there didn’t exist a relation between the problems. Subproblems and their relationships
form the pattern of the problem. An example from arithmetic would be the addition of two
natural numbers. The relationship between the numbers is the difference between positions on a

25

Educational environments for CT: design and
aspects of integration Module 8

number line. To add one number to another one would take the first number’s position as a start
and calculate an amount equal to the second numbers position forward. The number of the new
position is the result of the addition.

In engineering, CS, design, and other fields, problems are frequently broken down by their
functions (Rich et al., 2019). Functional decomposition is a result of the combination of
substantive and relational processes. The key to make the decomposition functional is the
relationship between subproblems. If the relationship is functional then some operation happens
between two subproblems. A functional relationship in arithmetic could be addition,
subtraction, multiplication or division. Example of the use of arithmetic functions in other
fields of mathematics are the quadratic equation, the greatest common divisor and the
Pythagorean Theorem. In CS an algorithm expressed in an imperative type (commanding the
computer) of programming language would employ control structures that form the relationship
between solutions to subproblems. Breaking down the problem using substantial and relational
decomposition helps to gain new meaningful information to devise a (algorithmic) solution
(Rich et al., 2019).

Algorithms

Algorithms are part of mathematics. Sometimes any step-by-step process is described as an
algorithm, but it is not the process, but the definition that is the algorithm. The definition has to
describe the process with mathematical rigour. CS relies on algorithms since its operating
principle is based on a computational model (see Unit 1/Mathematics). Everything that the
computer does is a calculation (called computation), but for the machine to know what to do
every action has to be explicit. In a CS context an algorithm can be defined as “…a finite,
abstract, effective, compound control structure, imperatively given, accomplishing a given
purpose under given provisions.” (Hill, 2016, p. 47).

To decompose Robin K. Hill’s (2016) definition of an algorithm (see above) one can start by
picturing an algorithm as a definition of a process consisting of discrete steps. An algorithm
describes a finite process that has to come to an end. The description is abstract and uses only
the features needed to depict the change intended. In addition to finiteness the algorithm has to
be effective which means that the resources and time used has to be reasonable. An algorithm is
a combination of different control structures that guide the change of its values and finally ends
in a result. Control structures and changes to the variables are presented as imperatives using
commands. The algorithm should fulfil its intended purpose and nothing else. The algorithm
should behave correctly with any input in the specified range.

Computational thinking can be defined as the mental skills needed to automate the execution of
an algorithm (Denning, 2017b). The properties of the algorithm defined above are a
prerequisite that it can be implemented, it behaves as expected and that the result is correct. To
implement is to write a program that the algorithm is a part of. Even though every program is
algorithmic only those parts of the program that are general enough so that they could be reused
in some other contexts are called algorithms. These general algorithms are named, and their
definitions are shared among computer scientists. Lots of program code has to do with the
control of the computer in a specific context and the code is not usable in another. A program is
written in relation to the properties of the computer. One could control the computer directly,

26

Educational environments for CT: design and
aspects of integration Module 8

but this is very difficult and error prone. In general programmers’ work with a higher-level
computational model which is described by a programming language.

A program is written in a programming language. The grammar of the programming language
is called a syntax. The semantics define the meaning of the sentences in the language. The
meaning can refer to calculations or the functioning of the computer. A program is a list of
sentences which are called statements. The statements are executed one at a time in given order.
A statement consists of a command and values that the commands need for its execution.
Values can be defined directly, but usually some letter symbol is used as a stand in like in
school algebra. The symbol is called a variable if it can be changed and value if it is constant
once set. Sometimes a statement contains mathematical or logical expressions that calculate
new values based on the variables/values. The difference between a command and an
expression is that the former controls the functioning of the computer and the latter produce
values. The result of an expression are inputs to the command. Expressions consist of operators
(like addition or subtraction mathematics and AND or OR in logic) that operate on the
values/variables. A program execution ends at the last statement if there isn’t a statement that
would tell otherwise.

The program is written one statement on each line. The execution of the program goes through
each line of the program until it reaches the end. Control statements alter how the execution
progresses. Conditional statements allow to choose between alternative path of execution. It is
possible that the execution returns to the main path after the alternative statements have been
executed. A loop statement is a construct that repeats a set of statements until a condition is
met. After the execution of the loop has ended the program execution continues if there are
statements left. Programs can get quite large which makes it hard to understand the program
code. Sometimes the functionality of a part of a program would be useful in another. Functions
and procedures provide modularity and reuse. They are subprograms that can be named and
called like existing commands of the language. The difference between a function and a
procedure is that the first one returns a value and the second changes the state of the computer.
Python and Racket are examples of textual programming languages used in education. There
are also visual programming languages aimed at novices where programming resembles
building a puzzle.

A puzzle-based approach to visual programming is also called block-based programming
(Weintrop, 2019). In this type of programming, the commands of the language are presented as
visual blocks. The form of the blocks gives clues on how and where they can be used. The
target group of these kind of programming languages can be kids as young as five years, but
mostly the languages are aimed at eight- to sixteen-year-olds. To write a program is to combine
program blocks by dragging and dropping. Usually, the programming environment prevents the
combination of blocks that don’t fit together. This allows the writing of a program statement by
statement as in textual programming languages while preventing syntax errors. Since
programming is made by drag and drop the programming environment can offer additional
support by grouping the blocks by function and use colours for easy identification. Knowing or
remembering what is possible is replaced by browsing commands.

A side effect of block-based programming is that it relieves the user from writing. The user
doesn’t have to worry about spelling mistakes, strange punctuations marks or missing pieces of
syntax. The graphical representation of statements allows the use of longer descriptions since

27

Educational environments for CT: design and
aspects of integration Module 8

commands don’t have to be written. It also gives the possible to describe the meaning since the
exactness needed for the computer can be hidden from the user. In addition to the block-based
language also other aids can be added to the programming environment. In Scratch (Maloney
et. al., 2010), which is currently (in 2020) the most prominent block-based programming
language, the control of graphical elements on the screen called sprites has been made
particularly easy. Each sprite has its own program that controls its behaviour. One of the most
important features of the sprite is its location. This makes it easy to make things happen on the
screen. Since sprites are independent wholes like functions or procedures in other languages,
they can easily be moved from one program to another.

Case study: Modelling gravity in Scratch

Lopez and Hernandez (2015) created an example of a physics project called “Free fall” that
could be an assignment for primary or secondary school pupils. The project was implemented
in Scratch and it modelled how gravity caused acceleration when an item is falling freely. The
physical phenomenon was visualized with picture of a tree and an apple that falls from one of
its branches. The velocity of the falling apple is shown as a value and the acceleration is
animated by printing the position of the apple in growing increments. To complete the
assignment a pupil needs to find out about gravity and what kind of formula describes it effects
on a falling item. Using the formula, it would be straight forward to calculate the speed at the
end of a distance from an imaginary branch to the ground. The challenge is to use the properties
of Scratch to show the increasing speed due to acceleration.

One could think that for pupils in the primary school the result of the program would be shown,
but for secondary pupils’ part of the assignment would be to come up with the principle of
visualization themselves. From the model implementation by Lopez and Hernandez a start
would be to add the stage with a three, draw a sprite depicting an apple and move the apple to
the correct position by trial and error (see figure 2.6 right hand side). Then comes the task of
figuring out how to connect the model of acceleration to the change in a position for the apple.
The change in position against time (seconds) would be the velocity and acceleration would be
to print the new position of the apple in equal time increments. The start velocity for the apple
would be zero (see figure 2.6 centre the first set of blocks).

28

Educational environments for CT: design and
aspects of integration Module 8

Figure 2.6. A screenshot of the Scratch environment which has the graphical elements of apple
in a tree and associated program to visualize the falling of the apply due to gravity.

In the model application a second is depicted as one round in a loop (here named repeat until a
condition; see previously figure 2.6: centre the second set of blocks). Now velocity is the
change in the position of the apple during one loop. First the effect of acceleration is accounted
for by adding 9.8 to velocity (set velocity (m/s)…) and the vertical position of apple is changed
(change y by velocity (m/s); see figure 2.6: centre the second set of blocks). Stamp-operation is
used in every round of the loop to print an apple (pen and stamp; see previously figure 2.6:
centre the second set of blocks). The loop is terminated when the y position of the apple is at
the bottom edge of the stage. Once the model has been built there is a possibility to improve the
model to be more realistic. Pupils could add air friction or model the effect of wind.

More information about the case study: Scratch as a computational modelling tool for teaching
physics (see references Lopez & Hernandez, 2015).

The implementation in Scratch (visited 30.8.2020): https://scratch.mit.edu/projects/15060411/

Summary

The components of CT pattern recognition, abstraction, decomposition, and algorithms as
computer programs are all employed in previous example. These are skills that pupils need to
know how to utilize the possibilities of computing in STEM. The different components of CT

29

Educational environments for CT: design and
aspects of integration Module 8

must be introduced to the pupils: first separately and then combined to form a whole. It is
important that programming is not presented only as an elaborate calculator, but that real
possibilities of computing are explained. In the example above pupils familiarized themselves
with the topic of gravity, built a computational model and used the properties of Scratch
environment to visualize it. Depending on the pupils’ maturity theoretical explanations of CT
can be presented, but without practice computational thinking can’t be learned. Also, the
teacher needs to practice programming to be able to convey the insights required to create a
program.

Lecture - CT perspectives for STEAM framework

Using the text above
● Three CS perspectives
● Pattern Recognition
● Abstraction
● Decomposition
● Algorithm executed by a computer

Activity 2.1 Homework - description of own topic using CT Perspectives for STEAM

The aim of this exercise is to practice applying computational thinking to a topic in your
subject. The Modelling gravity in Scratch -case study (see above) is an example application
where gravity of physics has been modelled and visualised computationally. You should
identify how computational thinking could aid solving a problem, creating a technology or
understanding a phenomenon.

1. Choose an interesting topic in your subject.

2. Which CS perspective is related to your topic?
● Mathematics: What problems can be solved by computation?
● Engineering: What tasks can be accomplished by controlling information

technology?
● Science: What phenomena can be understood as computational processes?

3. Apply the PRADA model to your topic according to the chosen perspective.
● Pattern Recognition
● Abstraction
● Decomposition
● Algorithm executed by a computer

30

Educational environments for CT: design and
aspects of integration Module 8

4. What kind of exercise could be developed from the computational interpretation of the
topic?
● State the age/grade of the pupils.
● Describe the idea for an exercise (the implementation details can be omitted).

Activity 2.2 Homework - Peer reviews

● Review Activity 2.1 answers of three colleagues
● Assessment: Accepted/Failed
● Each point is graded on the scale 0-5 (average has to be 2 or better for acceptance)

o the presentation of the topic
o argumentation and clarity
o utilisation of the unit’s content

Unit 3 – Choosing educational technologies based on CT Perspectives

Today’s pupils are fluent users of digital technologies, but it doesn’t necessarily mean that they
understand the principles. They need to practice the use of digital technologies first in a more
organized setting to be later capable of applying them more freely. STEAM education is about
combining knowledge and skills from different areas to solve a problem. Pupils can benefit of
experiences with both general tools and tools aimed at a specific subject. In both cases the
teacher can use the CT Perspectives framework to recognize educational technologies that
combine the handling of topic specific patterns with computational capabilities. In this unit the
framework is positioned in a model of teaching to aid in choosing a tool that fit the intended
pedagogy. Examples of educational technologies from the three perspectives are given. Finally,
the teacher can decide how much the teaching is affected by the technological possibilities.

The Conversational Framework (see Figure 3.1) describes learning as an iterative dialogue
between teacher and pupils (Laurillard, 2002; Laurillard, 2012). There are two levels: the
communication level where theories and concepts are exchanged, and the practical level where
actions lead to experiences. The levels are connected by both teacher and pupils engaging in
adapting theories to practice and reflecting on the theories based on the gained experience. In
the discourse the teacher disseminates theories and ideas, and the pupils respond with
conceptualisations of what they heard. If misunderstood the teacher can modify the message
and the pupils can respond with new interpretations. In many topics there is also a practical
dimension. The teacher creates an environment where the pupils can put the theories into
practice by performing tasks. Depending on the pupils’ responses in the discourse the tasks can
be adapted to appropriate knowledge level. The teacher sets goals for the tasks that the students
should perform. The pupils adapt their actions in light of their theoretical understanding and
given goals. Based on the feedback gained from performing the tasks the pupils reflect on their

31

Educational environments for CT: design and
aspects of integration Module 8

understanding and adapt their actions to try again. Based on the pupils’ performance the teacher
modify how she teaches the next time.

Figure 3.1 The Conversational Framework describe teacher’s and student’s interaction both on
the conceptual level and through exercises offered by the teacher. Both teacher and student
adapt their actions based on their communication and experiences through their actions.
Teacher creates the environment for the student to practice his knowledge and the student
moderates his actions based on the feedback which also affects his conception of the topic.

As a model the Conversational Framework gives a simplified view of teaching, but it has
enough detail to cover the most common ways of learning (Laurillard, 2012). It covers learning
through acquisition, inquiry, practice, production, discussion, and collaboration. The aim of the
framework is to aid the teacher in designing the learning environment. Different kind of
technologies can be used in the designs. In this unit we are particularly interested in technology
supporting the practice/modelling dimension of the framework (see Figure 3.1 lower half).
Educational technology supports the teacher in creating tasks for the pupils that would allow
them to practice the learned concepts. The practice dimension relies on the teacher to give
feedback on the pupils’ performance. Technology can also provide a platform for answers,
feedback and grading. In the modelling dimension the teacher provides a technological
environment that gives feedback. In the context of disciplinary CT, the late Seymour Papert’s
work on constructionism (Harel & Papert, 1991) and microworlds (Papert, 1980; 1996) are
excellent examples of the modelling aspect.

32

Educational environments for CT: design and
aspects of integration Module 8

From a computational perspective the different STEM subjects are answering different
questions. Mathematics tells what kind of problems can be solved by computation. Computers
were made for calculation and therefore even though the goal is not mathematical the problem
have to be expressed with mathematical rigour. Engineering/Technology is about control of
electrical devices. For more complex control the device has to have electronics or
computational technology embedded. Scientific phenomena can also be modelled as
computational processes. All phenomena whose behaviour can be described mathematically
can be calculated on the computer. Phenomena that can’t be described by exact formulas can be
described using statistics. Statistics can handle variation, uncertainty, and large quantities of
data. The perspectives answer different questions even though the computational mechanism is
the same.

The CT Perspectives framework consisted of pattern recognition, abstraction, decomposition,
and algorithms. The chosen technology must be able to represent the pattern that frame the
problem. Generally, the pattern represents one of the STEM perspectives. The possibility to use
concepts and relationships that are named after the vocabulary of the pattern makes it easier for
the pupils to think about a change that would solve the problem. The change from inputs to
outputs as a solution to the problem is a description at the highest level of abstraction (problem
level). On the object level the pupils define an algorithm that operates based on the concepts
and relationships of the pattern. The program level can be closer to the algorithm (object level)
or the computer (execution level). The pupils benefit from a programming language or other
computational representation that allows decomposition of the problem directly without making
transformations between object and program level. The educational technology should provide
feedback to the pupils so that they can evaluate the results and make corrections if required.

The Conversational Framework is meant to aid the teacher in developing the learning
environment. To disseminate experiences with new learning environments one can, use
Pedagogical Patterns (Laurillard, 2012). A Pedagogical Pattern is a way to articulate, test and
share the principles and practices of teaching with digital technologies (Laurillard &
McAndrew, 2003). The pattern can be used to describe the sequence of teaching-learning
activities. Additionally, a Pedagogical Pattern contains information to describe the context of
the pattern (see Table 3.1) the origin, summary, topics, learning outcome, rationale, duration,
learner characteristics, setting and group size. The Pedagogical pattern is here used as an aid to
describe educational technologies for STEAM teaching. The students can also use the patterns
later as teachers to share own learning designs with educational technologies.

Table 3.1: Pedagogical Pattern context descriptors (Laurillard, 2012).

Category Description
Origin the original source and later contributors
Summary brief description of what is being taught and how
Topics keywords that will help other teachers decide the

relevance to them
Learning outcome what the learner will know or be able to do by the end
Rationale the learning approach or pedagogic design principle
Duration total learning hours, not necessarily continuous
Learner characteristics educational pre-requisites, experience, interests

33

Educational environments for CT: design and
aspects of integration Module 8

Setting face-to-face, blended, or online
Group size the range of minimum to any maximum

Examples of educational technologies in STE(A)M

This chapter presents examples of educational technologies for the STEM topics. Each example
is presented as a pedagogical pattern which describes a pedagogical design where the
technology is a part of a cycle of teaching and learning. The combination of technology and the
description of its use form a whole. One can invent a new way of using the technology, but that
would also be a new pattern. Additionally, a general description is provided which tells the
main characteristics of the pattern and helps the reader to decide if the pattern is worth a closer
look. Here follows, examples of patterns for the module topics of mathematics,
technology/engineering, and science.

C2STEM (science)

Category Description
Origin Hutchins, N. M., Biswas, G., Maróti, M., Lédeczi, Á.,

Grover, S., Wolf, R., ... & McElhaney, K. (2020).
C2STEM: A System for Synergistic Learning of
Physics and Computational Thinking. Journal of
Science Education and Technology, 29(1), 83-100,
https://doi.org/10.1007/s10956-019-09804-9.

Summary The modelling and simulation environment C2STEM
is here used to teach physics. The topic is kinematics
including the concepts of position, velocity, and
acceleration. The models created are computational
which supports both learning of physics and CT
practices. The modelling environment provide support
learning with scaffolded tasks and embedded
formative assessments.

Topics STEM+CT, synergistic learning,
Learning-by-modeling, CT, evidence-centered design,
open-ended learning environment

Learning outcome The student will know concepts and
practices of physics. The learning by modelling using
a computational environment teaches also CT practice
like decomposition, refinement and debugging.

Rationale learning by modelling
Duration -
Learner characteristics high-school students
Setting blended
Group size 1

34

Educational environments for CT: design and
aspects of integration Module 8

C2STEM is an open-ended learning environment for STEM learning. It is originated from the
evidence centered design principles to design and develop a collaborative C2STEM for
integrated learning of STEM + CT in high school science classes (for example Physics in this
context). The objective of C2STEM is; learning STEM topics through computational
modelling. Computational modelling represents core scientific practices including modelling,
verification, and explanation. Computational models assist learning complex systems using
mathematics, physics and computer science. C2STEM is based on learning-by-modelling
paradigm which supports exploration by enabling learners to stimulate and play with their
models and study their behaviour under various conditions. For example, in physics, one
example is the use of a computational model to study an atomic structure by exploring its
properties under various conditions.

CTSTEM is a web-based and deployed with cloud-based server that allows continuous access
through web servers and internet resources. The C2STEM environment is intervened with
visual programming (NetsBlox) with domain specific modelling languages to promote
synergistic learning of discipline specific (e.g., Physics, Marine Biology) with computer
science concepts and practices. Notably, NetsBlox is a visual programming language and
cloud-based environment that enables novice learners to create and modify domain specific
computational models. NetBlox’s visual notation is an extension of Snap and uses JavaScript
code to create STEM projects, such as computational models for “kinematics”. Figure 3.2
shows a screenshot of a model extracted from (https://www.c2stem.org/).

Figure 3.2: Example screenshot for C2STEM based model building

Hutchins et al. (2020) developed a C2STEM system for high schools students to scaffold
learning of physics using computational modelling. They adopted a design-based approach to
develop and evaluate a collaborative, computational STEM (C2STEM) learning environment.
The study framework was set based on the principles: i. Evidence centered design, ii.
Learning-by-modelling paradigm in STEM, and iii. Exploratory learning of dynamic processes
for CT+ physics learning. Figure 3.3 shows the C2STEM framework developed by Hutchins et
al. for their study.

35

https://www.c2stem.org/

Educational environments for CT: design and
aspects of integration Module 8

Figure 3.3: Simplified design process developed by Huchins et al.

A. Selection of STEM (Physics in this context) topic for computational modelling:

Topic: Computational modelling of kinematics
Sub topic(s) and contents: Forces and Motion concepts of position, velocity, and
acceleration and their relations including time and distance.

B. Linking CT concepts with a selected topic:

Learning programming to understand basic coding that includes algorithms, initialising and
updating variables, operators and expressions, control structures and more. That is, NetsBlox
and domain specific programming languages.

C. Computational modelling practices (A+ B)

Computational models’ theme: Delivering medicines to a tribe in a remote amazon jungle
This study adopted the problem based learning approach to execute the aforementioned
process step-by-step to capture student learning outcomes.

The tasks are;
1. Develop a computational model that simulates 1-D, constant velocity motion using

addition of velocity vectors that occur only under particular conditions.
2. Debug a given model so that it correctly simulates 1-D constant acceleration motion by

computing velocity and position based on time and acceleration.
3. Use a computational model to solve a 2-D motion problem involving distance, speed,

acceleration, and time.
4. Use a given graph or data able to identify possible errors in a computational model

simulating 1-D vertical motion as a result of acceleration due to gravity.

As highlighted (bold and underlined), the first three tasks were designed based on “kinematics”
topic taught in the Physics classes. Students were instructed to use programming for C2STEM

36

Educational environments for CT: design and
aspects of integration Module 8

learning environment to develop, use and evaluate a model to understand the properties of
forces and motion under various conditions.

First, students were given the lecture about the theme of computational models and related
tasks set for this study. Then, during the model(s) development process students were given
guided inquiry students were asked to change the parameters of simulation models they
developed to evaluate physics relationships. For example, students were asked to document the
results of running their models with different positive and negative initial values for
acceleration and initial velocity done for task 1. Based on an instructional lecture and guided
inquiry, students worked on model building tasks, where they combined their learned physics
knowledge with CT concepts to build computational models. In addition, students also applied
different conditionals to control the acceleration, speed and direction of the vehicle used in their
model. For example, if the speed of the truck > 50 then “slows down”. Tasks 3 and 4 were set
as challenging for students to extend their exploration skills via learning more coding
techniques in align with defined physics concepts set for this study.

SmileyCluster (science)

Category Description
Origin Wan, X., Zhou, X., Ye, Z., Mortensen, C. K., & Bai, Z.

(2020, June). SmileyCluster: supporting accessible
machine learning in K-12 scientific discovery. In
Proceedings of the Interaction Design and Children
Conference (pp. 23-35),
https://doi.org/10.1145/3392063.3394440.

Summary Since the use of Artificial Intelligence (AI) is
becoming more common young learners need to
understand the nature of the technology to assess its
meaning for personal and working life. Machine
Learning (ML) is currently one of the major subfields
of AI, but due to its advanced mathematical and
computational nature it is not accessible for young
students. SmileyCluster is an environment where the
ML capability of pattern recognition and classification
is visualized so that the learner can use his own similar
capabilities to understand the functionality of the
technology.

Topics data visualization; hands-on learning; AI literacy;
scientific discovery; STEM education

Learning outcome in general understanding Pattern Recognition (PR) and
how ML concepts and methods are related to PR.

Rationale constructivism, inquiry-based learning, collaborative
Duration -
Learner characteristics middle school
Setting face-to-face
Group size student pairs

37

Educational environments for CT: design and
aspects of integration Module 8

SmileyCluster is web-based collaborative learning environment for learning machine learning
(ML) concepts and methods. It uses k-means clustering technique for learning basic ML
concepts. The k-means clustering is one of the most common similarities based unsupervised
ML algorithms that widely used for clustering or similarity comparison for data analysis. This
clustering method enables data explorations which, in turn, promote hypothesis generation of
scientific phenomena. It contains face-overlay, a data visualisation metaphor, which present the
translated data points as visual elements for learners to understand the similarity and
comparison features of data points.

Wan et al. used SmileyCluster to introduce CT integrated data science concepts including ML
and k-means clustering techniques for high school students. It was conducted as part of
pre-college summer program. Twelve students attended the event. This study was facilitated by
one course instructor and with four data science researchers. The duration of the program lasted
about 2.5 hours. The activities were:
● 25 minutes for class instruction about AI and general differences between supervised and

unsupervised learning algorithms
● 15 minutes for pre-study questionnaire (pre-test) about students’ background in machine

learning and cluster analysis.
● 40 minutes for interaction with the system (SmileyCluster): grouping faces, using k-means

clustering
● 15 minutes for post-study (post-test) questionnaire
● 30 minutes for focus-group (8 students) interview

Refer YouTube video for more details (https://www.youtube.com/watch?v=ZiSR-5zpabw)

The study took place in on-campus computer lab. The web-based interface was setup on
desktops in a lab to accommodate all 12 students. As noted, 25 minutes lecture was given to
students in the beginning of the session for learning AI and ML algorithms (both supervised
and unsupervised methods but clustering). Then, pre-test was conducted focusing on
25-minutes lecture topics and prior knowledge in data science. After a 15-minute pre-study
questionnaire students were grouped as pairs of their choices. The groups started using
SmileyCluster enabled computers. The data set for the study collected from UCI machine
learning repository- related to STEM field and validated by scientists. The system already
loaded with images (emoji:smiley-icons) as dataset for the exploration.

The objective of the 40-minutes lab session was to 1. Introducing the data set and the face
mapping mechanism, and 2. Conveying the concept of multi-dimensional feature space. Course
instructor and supporting researchers explained the “Face-overlay” method to students in order
to explore, and how to group the face icons based on predefined 16 facial features including
eye position, nose texture, brow angles and lips shapes. Face-overlay is the interface of
grouping faces is designed for students to explore the clustering process. Students were
informed to group the face icons based on listed facial features manually by drag and drop
(manual clustering) and to compare the results generated by the system. Notably, Face-overlay
supports both pair-wise and global overlay comparisons to see the similarities and differences
between data points (face icons in this context) to cluster them. Figure 3.4 show the overview
of face-overlay and global-overlay concepts taken from Wan et al. (2020) study.

38

https://www.youtube.com/watch?v=ZiSR-5zpabw

Educational environments for CT: design and
aspects of integration Module 8

Figure 3.4. The overview of face-overlay metaphor and ML techniques.

In addition to the above, students attended the multiple choice questions to learn about
similarity comparison. Figure 3.5 shows the sample of multiple choice questions designed for
the study.

Figure 3.5. The design of multiple choice questions presented at SmileyCluster enabled
computer

For example, students were instructed to select the best number for k to learn how k-means
clustering works based k-inputs (Figure 3.6). That is, comparing the center face and combined
the faces of each cluster. Figure 3.6 shows the screen shot of k-means clustering based results
picture.

39

Educational environments for CT: design and
aspects of integration Module 8

Figure 3.6. The screenshot of k-means clustering defined in SmileyCluster web based
environment

After 40-minutes of lab session, post-test was conducted for another 15 minutes to measure
student understanding on k-means clustering concepts and methods, sense making patterns, and
scientific inquiry learned to compare pre and post responses for learning gains. Finally, a
semi-structured focus group interview was conducted to obtain participants’ view on cluster
learning experience in SmileyCluster web-based environment. The interview scripts were
analysed using thematic analysis. The post-test and interview results suggest that face-overlay
design metaphor based SmileyCluster environment facilitated understanding the ML concepts,
clustering techniques, sense-making pattern recognition and similarly-comparison feature
techniques.

Educational Robotics and Creative Computational Problem Solving (subject:
technology/engineering)

Category Description
Origin Chevalier, M., Giang, C., Piatti, A., & Mondada, F.

(2020). Fostering computational thinking through
educational robotics: a model for creative
computational problem solving. International Journal
of STEM Education, 7(1), 1-18,
https://doi.org/10.1186/s40594-020-00238-z.

Summary Educational Robotics (ER) are increasingly used in
classroom to teach CT. Creative Computational
Problem Solving is a model that supports teachers in
the design, implementation, and assessment of ER
activities. The model helps the teacher to plan for

40

Educational environments for CT: design and
aspects of integration Module 8

instructional intervention which introduces relevant
CT concepts for different phases of ER activities. It
gives the student more balanced view of problem
solving than just focusing on programming.

Topics computational thinking, educational robotics,
instructional intervention, problem solving,
trial-and-error

Learning outcome The students will know how to control a robot and
solve related problems. They will learn how to use the
trial-and-error method, problem analysis, idea
generation and formulation of solutions in the context
of CT.

Rationale inquiry-based learning
Duration -
Learner characteristics primary school students (between 9 and 10 years old)
Setting face-to-face
Group size 2-3 students

Educational robotics (ER) is a technology used in education to enhance the development of
skills and competencies of young learners including children and teenagers. ERs activities are
typically contained three main components. They are, 1. ERs, 2. The interface that allow the
user to communicate with the robots, and 3. Tasks that to be solved using ERs and interface.
Indeed, robotisation is not a new concept in education. ERs are widely implemented in learning
settings as part of constructivism [13]. Moreover, integrating robotics in a learning setting can
lead to an interest in STEAM topics. ER based teaching and learning to improve learner’s
critical thinking and problem solving [14]. ERs increasingly used in classrooms for fostering
the development of student CT skills. There have been studies discussing how to implement ER
activities for CT development in classrooms [15,16]. For example, Chevalier et al. presented a
model that guides teachers to identify relevant CT concepts for different phases of ER activities
in order to plan suitable instructional interventions. They developed a conceptual framework of
educational robotics system (ERS) by combining creative and computational problem solving.
It is called creative computational problem solving model (CCPS). It contains five phases. The
first three phases of the CCPS focuses on three concepts: understanding the problem,
generating ideas, and planning for action (formulating the robot’s behaviour). The fourth phase
describes the creation of executable code (programming) for the robot and the fifth phase
focuses on execution of the code for evaluating the solution (the robot’s behaviour).

The proposed CCPS model was evaluated using a robot “Thymio” lawnmower
(https://www.thymio.org/) with 29 primary school students. The tasks were carried out in the
groups of 2-3 students. The task was; execute the lawnmower mission with the Thymio robot.
Figure 1 shows the playground of the robot lawnmower mission with Thymio.

41

https://www.thymio.org/

Educational environments for CT: design and
aspects of integration Module 8

Figure 3.7. (Chevalier et al. 2020; CC BY 4.0)2 Playground of the robot lawnmower mission
with Thymio.

The playground of the robot lawnmower was 45 cm X 45 cm. The fence of the playground was
constructed using wood. The lawn area was represented by eight squares of equal size with an
imprinted law pattern. The ninth square is imprinted with a brick pattern and placed the bottom
right corner of the area, representing a garage-starting point of the Thymio lawnmower robot.
The robot can be programmed to drive it autonomously around the specified lawn area (Figure
3.7) covering as much as possible. An event-based programming language VPL was used to
define the behaviour (programming) of the robot. In VPL platform, the parts of the robot were
represented by graphical icons for students to understand and to implement solutions by simple
drag-and-drag actions. Figure 3.8 shows the screenshot of VPL programming interface and
Thymio robot.

2 Picture has been slightly cropped. Original: Chevalier, M., Giang, C., Piatti, A. et al. Fostering computational
thinking through educational robotics: a model for creative computational problem solving. IJ STEM Ed 7, 39
(2020). https://doi.org/10.1186/s40594-020-00238-z. is Open Access licensed by CC BY 4.0.

42

https://doi.org/10.1186/s40594-020-00238-z
https://creativecommons.org/licenses/by/4.0/

Educational environments for CT: design and
aspects of integration Module 8

Figure 3.8. Iconic representation of programming commands in VPL platform (left). Thymio
simulator (right).

Students were instructed based on CCPS model concepts to proceed one after another. First, all
students were introduced to practice with Thymio robot and VPL programming interface
through several school lessons (1 hour per week for 12 weeks). Students were groped in
random as groups of two or three and further classified as test and control groups. The study
was conducted in two consecutive sessions of 45 minutes for each experimental condition. That
is, the test group started the activities first while control group went for museum exhibition and
vice versa. Each group of the students were assigned with one of the two experimental
conditions randomly (test or control). The goals and rules of the activities were explained in
brief for both groups. The test group started the activity with 10 minutes of blocking of the
programming interface. They were given access to the playground and Thymio but not allowed
to use the VPL programming platform. After this phase, the blocking was released and test
groups were allowed to use everything (including VPL programming platform) for next 10
minutes only but not allowed to execute any code on the robot. After 20 minutes of blocking
and unblocking the use of VPL programming platform and execution of code, they were
allowed to use everything for the last 10 minutes.

On the other hand, control group were given 40 minutes to implement their solutions at
lawnmower robot and allowed to experiment as many as times with the Thymio, the
playground, and VPL programming interface. Both sessions were supervised by two
experimenters. They also provided the technical support and addressed students’ questions
regarding tasks. However, they were not allowed to provide any support on solutions for the
task. Both group activities were video recorded for further analysis. The analysis results
showed that students spent most of their time on programming and evaluating. They also found
that providing unlimited access to programming interface and robots to students promote
cognitive processes related to problem understanding, idea generation and solution formulation.

Lattice Land - microworlds for exploring geometry (subject: mathematics)

43

Educational environments for CT: design and
aspects of integration Module 8

Category Description
Origin Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating

computational thinking practices and mathematical habits of
mind in lattice land. Mathematical Thinking and Learning,
20(1), 75-89, https://doi.org/10.1080/10986065.2018.1403543.

Summary The subject to be taught is high-school geometry using a
mathematical microworld called Lattice Land. The aim is to
practice both mathematical habits of mind and CT. The student
learns tinkering, experimentation, pattern recognition, and
presenting hypothesis in a formal mathematical notation.

Topics lattice geometry, computational learning environment,
mathematical thinking, computational thinking

Learning outcome Students learn to recognize and reason about complex
geometrical patterns. Additionally, they learn computational
methods used as part of learning.

Rationale constructionistic; learning by doing
Duration -
Learner characteristics high-school students
Setting online
Group size personal

Lattice Land is collection of math microworlds based on NetLogo (Wilensky, 1999)
environment. It is intended as a low floor high ceiling introduction to lattice geometry by both
offering structure and allowing free exploration. The environment can be used for open-ended
experimenting, but it is also suitable for inquiry-based learning if an assignment or question
guides the exploration.

The microworlds consist of lattice formed by a matrix of dots. Each dot has a coordinate (x, y)
where x and y are integers. One can draw polygons on the lattice by connecting dots with
segments. The connected dots form the vertices of the polygon. The learner can interact with
the microworld by drawing segments between the dots to form polygons and modifying the
polygons by moving its vertices or adding additional segments. Since adding segments and
moving vertices can only happen between the dots the lattice provides structure for the
exploration. Different microworlds can introduce additional features or constraints. For
instance, a microworld can provide information like segment length and polygon area. A
constraint would be to allow only manipulation of the vertices of a provided polygon.

The Lattice Land microworlds can be explored on NetLogo web or the environment and the
microworlds can be downloaded (https://netlogoweb.org). In the article three microworlds and
adjoining questions were described that explored the geometrical concept of area. One example
was Lattice Triangles Explore microworld (see figure 3.2) with a four by four lattice and one
triangle. The question was how many different sized areas formed by a triangle can be found in
this lattice. The student should explore the possibilities by moving the triangle vertices to form
different triangles. The correct answer is sixteen, but students can discover also other facts. The
students should be encouraged to be mindful of these kinds of findings. One such finding could
be that if a single vertex is moved back and forth along the same row or column the area
doesn’t change. Another one is that if one of the triangles side is parallel to the lattice x- or

44

https://netlogoweb.org

Educational environments for CT: design and
aspects of integration Module 8

y-axis then a triangle with area of 2,5 is impossible to achieve. Students was reported
wondering how a triangle with sides that had long decimal tails could still result in nice,
rounded area.

Figure 3.2. Lattice Triangles Explore microworld investigates how many different sized areas
formed by a triangle can be found in this lattice.

Lattice Triangles Explore microworld allows the students to explore and develop an
understanding of the triangle concept. Especially the relationship between the shape, the length
of the sides and the area comes to fore this way. This is the practice of modelling and
simulation related to computational thinking (Weintrop et al., 2016). Lattice land utilises
interactivity and scaffolding to allow freedom of exploration with meaningful results. This
wouldn’t be possible or accessible in another medium.

Taxonomy for choosing level of technology use

Based on Module 1/Unit 5: Project Based Learning (PBL) (Valentina Dagiene)

The possibilities of educational technology can be utilised to larger or smaller degree. When
starting with a new technology one can first use it as a substitute for an existing one. Later
when experience is gained one can exploit the technological capabilities more fully. The
Substitution, Augmentation, Modification and Redefinition (SAMR) model (Puentedura, 2006)

45

Educational environments for CT: design and
aspects of integration Module 8

provides a four-level taxonomy of selecting, using, and evaluating technology. The model helps
thinking about the technologies role in supporting learning.

Fig. 5.3. The SAMR model can help educators think about the role of technology in supporting
learning (developed by education researcher Ruben Puentedura 2010, Creative Commons)

Substitution
“Substitution” means replacing traditional activities and materials — like in-class lectures or
paper worksheets — with digital versions. There is no substantial change to the content, just the
way that it is delivered. The goal here is to keep things simple: there’s no need to reinvent the
wheel. Scan your lessons and worksheets, convert them into PDFs, and post them online using
Microsoft OneDrive, Google Drive, or a similar file-sharing service. Think about the
information you have on your walls, such as the classroom norms, the daily schedule, or
vocabulary lists, and convert them into digital formats that students can easily reference. It may
also help to provide synchronous as well as asynchronous versions of your lectures. If you’re
holding class meetings over a videoconferencing service like Zoom or Skype, provide a
recording for students who can’t attend. You can also create your own instructional videos for
students to view at their own pace.

Augmentation
This level involves incorporating interactive digital enhancements and elements like comments,
hyperlinks, or multimedia. The content remains unchanged, but students can now take
advantage of digital features to enhance the lesson.

For example, students can create digital portfolios to create multimedia presentations, giving
them more options to demonstrate their understanding of a topic. And instead of handing out
paper quizzes, you can gamify your quizzes with tools like Socrative and Kahoot.

46

Educational environments for CT: design and
aspects of integration Module 8

Teachers can also create virtual bulletin boards—using an app like Padlet—where students can
post questions, links, and pictures.

Modification
At this level, teachers can think about using a learning management system like Google
Classroom, Moodle, Schoology, or Canvas to handle the logistical aspects of running a
classroom, like tracking grades, messaging students, creating a calendar, and posting
assignments. Teaching online opens up new channels of communication, many of which can
help students who have traditionally been marginalized. Research shows that girls may be less
likely to speak up in class, for example, so they may benefit from backchannels—alternative
conversations that can run alongside instruction—that encourage participation.

Zoom’s text chat feature, meanwhile, gives students an opportunity to write their questions out,
which can feel less intrusive if there are dozens of students participating in the call. Also,
students who prefer to collect their thoughts may benefit from slower-paced, asynchronous
discussions in an online forum or email threads.

Redefinition
Learning is fundamentally transformed at the “redefinition” level, enabling activities that were
previously impossible in the classroom, e.g. virtual pen pals can connect students to other parts
of the world, whether it’s with other students or experts in a field. Virtual field trips enable
students to visit locations like the Amazon rainforest, the Louvre, or the Egyptian pyramids.
After reading a book in class, you can invite the author to chat about their work and answer
questions.

Technology also provides an opportunity to bring authentic audiences into your virtual
classroom and can make publishers out of your students. Kids can write their own wikis or
blogs for public consumption and feedback—and platforms like Quadblogging can connect
distant classrooms together so students both write and respond. Students can tackle local
problems—like investigating the water quality of a nearby river—and invite members of the
community to assess their digital proposals.

Lecture - Educational technology for CT perspectives

Using the text above
● Applying the CT perspectives
● Educational technologies supporting science
● Educational technologies supporting technology/engineering
● Educational technologies supporting mathematics
● The SAMR model

Activity 3.1 Homework - Planning educational technology support for own topic

47

Educational environments for CT: design and
aspects of integration Module 8

1. Select a topic in your subject and plan an exercise utilising “CT perspectives for
STEAM” -framework (refer to Unit 2 for details).

2. Choose a suitable educational technology that supports the pupils in performing the
exercise (use the educational technologies described in the lecture as a model when you
search the literature/Internet).

3. On which level of the SAMR model would you place the use of educationally
technology in the exercise (the minimum should be augmented). Revise the exercise
design if educational technology doesn’t seem to bring any benefit to learning.

4. Fill the table to describe the pedagogical pattern of the exercise you created.

Subject / Topic
Origin
Summary
Topics
Learning outcome
Rationale

Activity 3.2 Homework - Peer reviews

● review Activity 3.1 answers of three colleagues
● Assessment: Accepted/Failed
● Each point is graded on the scale 0-5 (average has to be 2 or better for acceptance)

o the presentation of the topic
o argumentation and clarity
o utilisation of the unit’s content

Unit 4 – Creating instructional content for CT integrated STEAM

In this unit, the conceptual model for planning STEAM teaching (Quigley & Herro, 2017) is
introduced. The focus is on creating instructional content. The choice of tools should be based
on the content, but the tools make it possible to introduce content that would otherwise be too
advanced for the pupils. This is also the start of the project work made in teams of 3-4 students,
which brings together everything taught in this module. This is the first part of the project
where instructional content is created and possibilities for CT application are sought. STEAM

48

Educational environments for CT: design and
aspects of integration Module 8

employs a problem-based pedagogy. The problems are open-ended to allow pupils freedom to
devise their own solutions utilising the different STE(A)M areas. A in the acronym refers to
liberal arts which allows for a broader audience of pupils to engage in problem-solving and
helps them to see how the problem relates to the real-world.

Both the instructional content and the learning environment are important in successful
STEAM teaching. They are interdependent, the content should make use of the possibilities in
the learning environment and in designing the learning environment, the needs of the content
should be considered. Here we focus on the content, but prior parts of the module and
knowledge of learning environments can be utilised. The purpose is to keep the focus on what
knowledge the pupils should gain. In STEAM the problems are taken from the real-world
where they often do not have a single right answer. The teacher should create realistic scenarios
for presenting the problems to pupils. The possibility for different kinds of answers and the size
of the task should inspire creativity and justify the need for collaboration.

Instruction is about how the teacher organizes, prepares, and delivers the content. STEAM
content should be designed with three requirements in mind: problem-based delivery, discipline
integration and problem-solving skills. Problem-based delivery is central in STEAM pedagogy.
Content is presented in relation to the different aspects of the problem. The aspects should be
from various disciplines or content areas. The teacher can’t be an expert in every discipline, but
she can point to resources and other experts which can provide more information. The problem
itself shouldn’t be a question with one correct answer, but a real-world situation where there are
multiple ways to solve the problem. The situation provides the context of the problem and it
should feel relevant for the pupils. Authenticity is important, if the problem and its context
feel’s false the student will be less motivated to learn.

Discipline integration is about teaching the students to combine content and methods from
various fields in solving the problem at hand. Even though the idea of STEAM is to use every
subject in the acronym, not all problems or problem-solving approaches will require all of
them. The choice of content areas and methods should be up to the pupils. The degree of
integration of the disciplines in the pupils’ answers can vary. It depends on how the problem is
presented and the pupils prior experience in combining the topics. The discipline integration
can be multidisciplinary, interdisciplinary, or transdisciplinary. Multidisciplinary is the least
integrated where the different dimensions of the problem are answered separately.
Interdisciplinary problem solving combines the methods from different disciplines. In
transdisciplinarity the content of one discipline is made more relevant by looking at it from the
contexts of multiple disciplines.

Problem-solving skills describe the characteristics of pupils. There are three type of skills:
cognitive, interactional, and creative. By solving problems these skills are developed. The skills
are general, but certain types of problems and ways of solving problems can improve a
particular skill. Abstracting, analysing, applying, classifying, formulating, interpreting,
perceiving, modelling, synthesizing, and questioning are examples of cognitive skills. These
can be enhanced by instructional approaches that support observation, experience, reflection,
and reasoning. Interactional skills are about communication and collaboration. From a single
pupil perspective, the skills include ability to brainstorm, communicate evidence, construct
explanations, engage in argumentation, disseminate evidence, present, respond, and explain. To
collaborate is to learn together by dividing the tasks related to the problem. Optimally the

49

Educational environments for CT: design and
aspects of integration Module 8

collaboration would result in connecting individual knowledge, gathering evidence and joint
experience.

Creative learning endeavours are needed to cultivate innovations, ideas, solutions, and
productions. The skills needed include designing, patterning, play, performing, modelling, and
connecting ideas. STEAM teaching caters for creativity by allowing multiple ways of solving
the problems and demonstrating understanding. The teacher must offer the pupils concepts and
tools to engage in the problem-solving scenarios and gain experiences. Both the Art and
Technology subjects in the STEAM acronym allows creativity. By combining these with the
other topics, new forms of expression can be found which supports both skill development and
content understanding. Design is the combination of art and technology in creating products as
solutions to problems. Sometimes usability of a technology is a problem which design can
solve.

CT touches on many of the aspects described in STEAM pedagogy. It incorporates the views of
the different subjects and provide tools to explore them. Even though controlling a computer is
not artistic (there can be differing opinions) it can be used as an artistic medium. Computing
can be used to simulate different phenomena or technologies if they are not available. Different
data sets and results can also be visualized. Computer presentation are not just text and
pictures, but also animations, sounds and videos. To choose and combine the many capabilities
of computers requires creativity. Like, the different subjects of STEAM, the possibilities of CT
and related tools should not be forced on the pupils but be available when needed. The pupils
need prior experience with CT and computing tools to be able to utilise them in STEAM
projects.

Example STEAM exercise 1

“It is estimated that only 1 in 1,000 sea turtle hatchlings will survive to adulthood
(http://www.seeturtles.org/baby-turtles/). Our local Sea Turtle Hospital is one place that helps
to rescue, rehabilitate and release sea turtles back into the ocean. Why do you think so few sea
turtles reach adulthood? What are some problems they face? Could people be unintentionally
harming sea turtles? What can we do to help? You and your team will work together to decide
how you want to educate our school. You will research what is hurting sea turtles, as well as
what may be killing them. You may want to contact the Sea Turtle Hospital, and see if they can
answer some of your questions, as well as tell you what hurt the sea turtles they are
rehabilitating. Consider creating a graph of your findings to see if there are any trends. Design
a two-part presentation; the first part should present your findings and the second part should
be a plan of action for how we can help the sea turtles. You could use an app like ChatterPix
Kids or Toontastic to record interviews or as part of your presentation. You will decide how to
present your findings to the class. We will then determine as a class which plan to implement.”
(Quiqley et al. 2020, Electronic supplementary material 2)

Example STEAM exercise 2

“The next generation of human device interfaces (i.e. eye tracking; face recognition, iWatch) is
embedding technology into clothing, or e-textiles. Such a step could bring people and
machines closer together. Such devices could also change the design of clothing, such as

50

Educational environments for CT: design and
aspects of integration Module 8

inbuilding cameras. Elite athletes are interested in these because of their ability to detect
muscle fatigue which has implications for training. The healthcare industry is hoping this will
help patients with disease such as epilepsy, diabetes, asthma, and more. However, the e-textile
market would like to break into one of the largest un-tapped markets...teens! They have
contacted PSM to hear your pitches (ideas) for the use of e-textiles. With your team, you will
research an area where e-textiles could be used in your life-- your pitch needs to include a
prototype, use, and discussion of some of the challenges of e-textiles and your plan for
remedying those issues.” (Quiqley et al. 2020, Electronic supplementary material 2)

Example STEAM exercise 3

“As more people move to XXXX and businesses continue to grow, traffic is increasing and
causing delays, especially along XXXX Road. For example, this means that a person driving 10
miles from their home on XXXX to XXXX High School might spend 45 minutes in traffic for
what should take less than 20 minutes. This comes at a great cost to families who spend less
time together, the environment which is polluted by increased and slower traffic, and the
economy as work time is reduced.

As a city planner, you have been given the challenge of designing a solution to the traffic
problems in the local area. You will use your knowledge of the scientific method and
engineering design process to find a solution and test it. You have decided it will be helpful to
think about the history of XX and how it has changed since colonial times to get a better idea of
the land and transportation needed. Also, you will research and read articles on the geographic
area, traffic, and the increased houses and businesses expected for XXXX. You will need to
propose a plan to alleviate traffic issues along with a model to show the city council, but you
will also need to be prepared to share the information with the community, as well.

Driving question: How can studying history and traffic patterns in a region help to design a
solution to transportation problems?” (Quiqley et al. 2020, Electronic supplementary material
2)

Lecture - STEAM Teaching Model 1/2

Based on the material (text above) and Unit 2: CT Perspectives for STEAM framework
● Problem-based delivery
● Discipline integration
● Problem-solving skills
● Application of CT Perspectives
● Case studies

The conceptual model of STEAM teaching – Instructional content

51

Educational environments for CT: design and
aspects of integration Module 8

Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM
teaching practices. School Science and Mathematics, 117(1-2), 1-12.
https://doi.org/10.1111/ssm.12201

Activity 4.1 course project part 1/2

This the beginning of the course project. The goal is to plan a learning intervention. The project
is divided in two parts. In this part you will assemble the project team and plan the content of
what you are going to teach. The size of the project can vary depending on the instruction given
by your teacher.

You should make a team with 3-4 of your colleagues. It is beneficial if your team would have
people representing different subjects or alternatively some of the members could represent the
viewpoint of a subject other than their own. Choose a topic which is timely, combines different
subjects, has a real-world context, and is relevant to expected pupils (choose a target group).
Create the task description and plan what kind of information the pupils could need. Remember
that the task should give space for creativity and alternative solutions. Also keep CT in mind,
the topic should have possibilities to utilise computational approaches.

Summary
● in teams of 3-4 students
● topic selection
● task description
● creating instructional content
● recognizing opportunities for applying CT

Activity 4.2 team discusses the plan with the supervisor

● When the plan is ready.
● The team presents the plan to the supervisor.

Unit 5 – Designing the learning environment for CT integrated STEAM

This unit continues with the conceptual model for planning STEAM teaching (Quigley &
Herro, 2017; Quigley & Herro, 2019). The focus is on designing the learning environment. The

52

Educational environments for CT: design and
aspects of integration Module 8

other units in this module have additionally given the bases to choose educational technology
that supports the integration of CT to STEAM topics. Like in content planning, the focus
shouldn’t be on the technology, but on creating an environment where the scenario can be
enacted. Since the approach of problem solving is up to the pupils then likewise the technology
used should also be their decision. By incorporating problems where automating algorithms
would be a natural solution the pupils are encouraged to think computationally. This unit is also
the start of the second part of the project work where the learning environment is designed, and
educational technologies are chosen for the scenario(s) created in the previous unit. A design
for a STEAM learning environment should focus on instructional approaches, technology
integration, assessment practices, and equitable participation.

STEAM teaching is based on teacher-facilitated learning, which differs from the traditional
teacher-led lessons. Pupils should be encouraged to take charge and responsibility for their own
learning. This can be difficult in the beginning and pupils can still look to the teacher for
answers. One method that can be used to change this behaviour is that the pupils should ask or
lookup three sources before contacting the teacher. The students should learn to rely on the
knowledge of their peers or on what they themselves can find out. In addition, before the
teacher answers the pupils, they could be asked to tell what they have found so far. The teacher
shouldn’t provide a correct answer but build on the reported findings and encourage to explore
further. Real-world problems don’t have a definite answer and pupils should learn to be
comfortable with not knowing an exact one. However, the answers can be more or less well
prepared and here the pupils’ ability to justify the chosen solution is important.

Lessons develop skills such as abstracting, analysing, applying, formulating, collaborating,
engaging in argumentation, disseminating evidence, and presenting. The teacher should
regularly create opportunities for the pupils to use these skills in different contexts. According
to the STEAM teaching model the pupils should learn to explore multiple paths in solving a
problem. Freedom to choose the problem-solving approach allows for inventiveness and use of
creative skills. To support this the teacher should augment the problem-solving scenario with
concepts, tools and opportunities for various experiences. The problem description should
support student-guided learning where peer assistance and collaboration comes naturally. This
requires that the problem design allow pupils to assume different roles in solving the problem.
When problem-solving requires combinations of different knowledge and skills then asking
help from peers and collaboration doesn’t feel forced. The teacher should design the problem
scenario to encourage age-appropriate levels of social and emotional engagement in learning.

Technology is one of the subjects of STEAM. In creating the learning environment, the pupils
should have access to different kinds of technological tools for solving the problem. They
shouldn’t be users but producers of technical solutions. To apply technology to the problem the
pupils need prior experiences with the tools in relation to the issues in the problem scenario.
Only by being comfortable with the technology, it can be integrated in the learning. In the
context of this module, the emphasis is especially on tools that support CT integration. The
solution has to have aspects that benefit from automating the execution of an algorithm. One
must differentiate between usage of readymade solutions and creating the solution. As an
example, presenting historical facts on a web page is not CT, but discovering those facts
through analysing data computationally is. The pupils can benefit of having tools for particular
purposes and general tools that can be modified (programmed) to fit the need. The general tools

53

Educational environments for CT: design and
aspects of integration Module 8

can be more supportive of combinations of methods from different subjects since they are not
made for single context.

Assessment is a central part of any educational model and therefore also in STEAM teaching.
The instruction, learning and assessment must be aligned to meet the goals of education.
Student-driven aspect of STEAM learning makes traditional testing methods like
multiple-choice tests misaligned. The choice of method should reflect the STEAM model
where the goal is for the pupils to engage in multiple modes of inquiry, learn to use a wide
variety of skills, and collaborate in finding the solution. To be authentic the pupils should be
asked to apply the knowledge and skills they learned in the context of the problem they are
solving. The problem-solving process that ends in a solution is indication of gained knowledge.
However, to just assess the result leaves out the possibility to improve the skills used while the
process is ongoing. To ensure that the assessment is linked to STEAM teaching practices it
should be embedded in the learning process. The teacher should give frequent and high-quality
feedback to the pupils during problem-solving. In this way, the teacher can ensure that the
pupils understanding of content is aligned with the learning objectives. The feedback can also
encourage pupils to be more mindful of their progress and think more deeply on the various
topics.

The goal of equitable participation is to be fair and reasonable in relation to the pupil’s prior
skills and knowledge. Cultural norms and family traditions affect the background knowledge
the pupils possess. These should be taken into account so that everybody starts from a common
ground. By providing mentors and experts, the teacher can support the pupils that might not
have the opportunity to access that kind of knowledge outside school. It can open the student’s
eyes for different kind of views and opportunities for future occupations. Here also a cultural
sensitivity is important so not to promote stereotypic views but show that a future can be what
you make of it regardless of your background. By creating space for self-expression, the
teacher allows the student to display their strengths. Since STEAM teaching is student-directed
and the assessment is embedded in the learning process this allows for a more equitable
participation by not forcing every pupil to the same assessment model.

Lecture - STEAM Teaching Model 2/2

Based on the material (text above) and Unit 3: Choosing educational technologies based on CT
Perspectives

● Instructional approaches
● Assessment practices
● Equitable participation
● Choosing educational technology for CT

The conceptual model of STEAM teaching – Learning environment

54

Educational environments for CT: design and
aspects of integration Module 8

Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM
teaching practices. School Science and Mathematics, 117(1-2), 1-12.
https://doi.org/10.1111/ssm.12201

Quigley, C. F., Herro, D., Shekell, C., Cian, H., & Jacques, L. (2020). Connected learning in
STEAM classrooms: Opportunities for engaging youth in science and math classrooms.
International Journal of Science and Mathematics Education, 18(8), 1441-1463.
https://doi.org/10.1007/s10763-019-10034-z

Activity 5.1 Course project 2/2

Here the project started in Unit 4 continues. When you have the exercise content and task ready
you should start to plan the implementation. The pupils need information to complete the
exercise and there are different ways to provide this. You can plan lectures, auxiliary material
and suggest internet sites or keywords to use in the search for information. Access to experts
would also strengthen the authenticity of the exercise. Another part of the implementation is the
technological support needed. There are subject related equipment and the usual office software
etc. Since we are here looking at integrating CT a special attention should be given to make
available computational tools fit for the intended purpose.

Summary
● Continues from unit 4.
● Designing the learning environment
● Planning educational technology support

o especially support for CT
● Writing a report
● Preparation of presentation

Unit 6 – Project presentations

Presentation of the prospective teacher teams learning intervention designs (project work).

Activity 6.1 Presentations and discussion

Own team presentation 15 min

55

Educational environments for CT: design and
aspects of integration Module 8

time allocated for each presentation.

10 min presenting design.

5 min questions and comments by the audience.

Assessment requirements and assessment strategy
All assessment tasks should be handed in before the deadline set.
Assessment task
should measure and provide evidence about the
achievement of learning outcomes of the module

Assessment criteria and method
for written assignments: e.g. lengths (in words),
structure (introduction, main part, conclusions),
proper use of terms and concepts.

Review of plan (based on PRADA) for
applying CT to STEAM topic(s)

Accepted/Failed, peer review. Criteria: the
presentation of the topic, argumentation and
clarity, utilisation of the unit’s content.

Review of plan (based on CT Perspectives
for STEAM framework) for how to choose
right technology supporting learning of
STEAM topic(s)

Accepted/Failed, peer review. Criteria: the
presentation of the topic, argumentation and
clarity, utilisation of the unit’s content.

Instructional design project report and
presentation

The lecturer gives the course grade based on
the project work. The project report is
assessed based on the “STEAM Classroom
assessment for Student Learning
Experience” -criteria (see below). How well
the project presentation summarises the main
ideas can give an optional + to the final
grade (in the Finnish grading system scale
0-5 this would be 0,25).

Peer reviews

The homework in Unit 2 & 3 are peer reviewed with the grades Accepted/Failed. Both need to
be accepted.

● Each point is graded on the scale 0-5 (average has to be 2 or better for acceptance)
o the presentation of the topic
o argumentation and clarity
o utilisation of the unit’s content

56

Educational environments for CT: design and
aspects of integration Module 8

STEAM Classroom assessment for Student Learning Experience (modified with criteria
for CT)

An explicit assessment criterion is used to grade the instructional design project created in
Units 4 & 5 (0-5). The presentation in of results of the project Unit 6 can give an additional +
(0,25).

Read the document TeaEdu4CT_8_module_assessment.xlsx (for the original see the reference
below Assessment is based on…)

Grading of the project work (0-5 each criterion):
● Subject-Matter Alignment
● Discipline Integration
● Problem-Solving Skills
● Computational Thinking
● Instructional Approaches
● Assessment
● Equitable Participation

Assessment is based on:

Quigley, C. F., Herro, D., Shekell, C., Cian, H., & Jacques, L. (2020). Connected learning in
STEAM classrooms: Opportunities for engaging youth in science and math classrooms.
International Journal of Science and Mathematics Education, 18(8), 1441-1463.
https://doi.org/10.1007/s10763-019-10034-z

ESM 1 (Electronic supplementary material; https://doi.org/10.1007/s10763-019-10034-z)

How well the project presentation (Unit 6) summarises the main ideas can give an optional + to
the final grade (in the Finnish grading system scale 0-5 this would be 0,25).

Implementation ideas
Unit 4 and 5 makes it easy to extend or shorten the module by making the project work more
elaborate or simple. One can extend the project work by designing a set of learning
interventions or a whole course. It is also easy shorten the module by offering the students
readymade materials and templates. In the extreme case the project work could be an individual
assignment ideating a learning intervention and presentation of the ideas in Unit 6.

57

https://doi.org/10.1007/s10763-019-10034-z
https://doi.org/10.1007/s10763-019-10034-z

Educational environments for CT: design and
aspects of integration Module 8

References
Bermúdez, J. (2020). Cognitive Science: An Introduction to the Science of the Mind (3rd ed.).
Cambridge: Cambridge University Press.

Blockley, D. (2012). Engineering: a very short introduction. OUP Oxford.

Checkland, P., & Holwell, S. (1998). Information, systems, and information systems.
Chichester: John Wiley & Sons.

Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking
through educational robotics: a model for creative computational problem solving. International
Journal of STEM Education, 7(1), 1-18.

Dasgupta, S. (2016). Computer science: a very short introduction (Vol. 466). Oxford University
Press.

Davis, M., Sigal, R., & Weyuker, E. J. (2015). Computability, complexity, and languages:
fundamentals of theoretical computer science. 2. edition. Elsevier.

Denning, P. J. (2007). Computing is a natural science. Communications of the ACM, 50(7),
13-18.

Denning, P. J. (2017a). Computational Thinking in Science. American Scientist, 105(1), 13-17.

Denning, P. J. (2017b). Remaining trouble spots with computational thinking. Communications
of the ACM, 60(6), 33-39

Devlin, K. (1994). Mathematics: The science of patterns: The search for order in life, mind and
the universe. Macmillan.

Devlin, K. J. (2012). Introduction to mathematical thinking. Palo Alto, CA: Keith Devlin.

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., ... & Andrews, A. (2019).
PRADA: A Practical Model for Integrating Computational Thinking in K-12 Education. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp.
906-912).

Gilbert, J. and Boulter, C. (1998). Learning Science Through Models and Modelling.
International Handbook of Science Education vol 1 ed B J Fraser and K G Tobin (Dordrecht:
Kluwer Academic) pp 53–66

Gowers, T. (2002). Mathematics: A very short introduction (Vol. 66). Oxford Paperbacks.

Gutiérrez, R. and Pintó, R. (2005). Teachers’ conceptions of scientific model. Results from a
preliminary study ESERA 2005 Conf. Proc (Noordwijkerhout, Netherlands)

58

Educational environments for CT: design and
aspects of integration Module 8

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of computer
programming, 8(3), 231-274.

Harel, I., & Papert, S. (Eds.). (1991). Constructionism. Ablex Publishing.

Hersh, R. (2014). Experiencing Mathematics: What do we do, when we do mathematics? (Vol.
83). American Mathematical Soc.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS quarterly, 75-105.

Hill, R. K. (2016). What an algorithm is. Philosophy & Technology, 29(1), 35-59.

Hutchins, N. M., Biswas, G., Maróti, M., Lédeczi, Á., Grover, S., Wolf, R., ... & McElhaney, K.
(2020). C2STEM: A System for Synergistic Learning of Physics and Computational Thinking.
Journal of Science Education and Technology, 29(1), 83-100.

IEEE (2010) Iso/iec/ieee 24765:2010 systems and software engineering - vocabulary

Jocius, R., Joshi, D., Dong, Y., Robinson, R., Cateté, V., Barnes, T., ... & Lytle, N. (2020).
Code, Connect, Create: The 3C Professional Development Model to Support Computational
Thinking Infusion. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (pp. 971-977).

Justi, R. S. and Gilbert, J. (2002). Modelling, teachers’ views of the nature of modelling, and
implications for the education of modellers Int. J. Sci. Educ. 24 369–87

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4),
36-42.

Kvasz, L. (2019). How Can Abstract Objects of Mathematics Be Known?. Philosophia
Mathematica, 27(3), 316-334.

Laurillard, D. (2002). Rethinking University Teaching in the Digital Age.

Laurillard, D. (2012). Teaching as a design science: Building pedagogical patterns for learning
and technology. Routledge.

Laurillard, D., & McAndrew, P. (2003). Reusable educational software: A basis for generic
learning activities. Reusing online resources: A sustainable approach to e-learning, 81-93.

Lopez, V., & Hernandez, M. I. (2015). Scratch as a computational modelling tool for teaching
physics. Physics Education, 50(3), 310.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch
programming language and environment. ACM Transactions on Computing Education
(TOCE), 10(4), 1-15.

59

Educational environments for CT: design and
aspects of integration Module 8

Malyn-Smith, J., Lee, I. A., Martin, F., Grover, S., Evans, M. A., & Pillai, S. (2018).
Developing a framework for computational thinking from a disciplinary perspective. In
Proceedings of the International Conference on Computational Thinking Education (p. 5).

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the
dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine,
27(4), 12-12.

Miller, G. A. (2003). The cognitive revolution: a historical perspective. Trends in cognitive
sciences, 7(3), 141-144.

NRC (National Research Council). 2012. A framework for K–12 science education: Practices,
crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states.
Washington, DC: National Academies Press.
www.nextgenscience.org/next-generation-science-standards.

Okasha, S. (2016). Philosophy of Science: Very Short Introduction. Oxford University Press.

Papert, S. (1980). Mindstorms: Computers, children, and powerful ideas. NY: Basic Books,
255.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal
of Computers for Mathematical Learning, 1(1), 95-123.

Pears, A. (2019). Developing Computational Thinking," Fad" or" Fundamental"?.
Constructivist Foundations, 14(3).

Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and
mathematical habits of mind in lattice land. Mathematical Thinking and Learning, 20(1), 75-89.

Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring students' understanding of the
concept of algorithm: levels of abstraction. ACM SIGCSE Bulletin, 37(3), 64-68.

Puentedura, R. (2006). Transformation, technology, and education [Blog
post]. Retrieved from http://hippasus.com/resources/tte/.

Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM
teaching practices. School Science and Mathematics, 117(1-2), 1-12.

Quigley, C. F., & Herro, D. (2019). An Educator's Guide to STEAM: Engaging Students Using
Real-World Problems. Teachers College Press.

Quigley, C. F., Herro, D., Shekell, C., Cian, H., & Jacques, L. (2020). Connected learning in
STEAM classrooms: Opportunities for engaging youth in science and math classrooms.

60

Educational environments for CT: design and
aspects of integration Module 8

International Journal of Science and Mathematics Education, 18(8), 1441-1463.
https://doi.org/10.1007/s10763-019-10034-z

Rich, P. J., Egan, G., & Ellsworth, J. (2019, July). A Framework for Decomposition in
Computational Thinking. In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education (pp. 416-421).

Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of
mathematics learning from a commognitive standpoint. The journal of the learning sciences,
16(4), 565-613.

Tedre, M. (2018). The nature of computing as a discipline. Computer science education:
Perspectives on teaching and learning in school, 2.

Tedre, M., & Moisseinen, N. (2014). Experiments in computing: A survey. The Scientific
World Journal, 2014.

Thimbleby, H. (2007). Press on: Principles of Interaction Programming.

Wan, X., Zhou, X., Ye, Z., Mortensen, C. K., & Bai, Z. (2020, June). SmileyCluster: supporting
accessible machine learning in K-12 scientific discovery. In Proceedings of the Interaction
Design and Children Conference (pp. 23-35)

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
Defining computational thinking for mathematics and science classrooms. Journal of Science
Education and Technology, 25(1), 127-147.

Weintrop, D. (2019). Block-based programming in computer science education.
Communications of the ACM, 62(8), 22-25.

Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International
statistical review, 67(3), 223-248.

Wilson, K. G. (1989). Grand challenges to computational science. Future Generation Computer
Systems, 5(2-3), 171-189.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wolff, A., Gooch, D., Montaner, J. J. C., Rashid, U., & Kortuem, G. (2016). Creating an
understanding of data literacy for a data-driven society. The Journal of Community Informatics,
12(3).

61

