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Activity 1.  Introduction to Computational Thinking and Algorithms 

1.1. Lecture: 1 hour 30 min 
1.1.1. Computational Thinking 
1.1.2. Algorithms in mathematics 

1.2. Exercises: 60 min 
1.2.1. Find the algorithm in a word problem using CT 
1.2.2. Convert a mathematical procedure to an algorithm 
1.2.3. Create an algorithm to guess a number in a range 

Total: 2 hours 30 minuter 

 

Activity 2.  Python for algorithms and visualising program structure 

2.1. Lecture: 1 hour 30 min 
2.2. Exercises: 60 min 

Total: 2 hours 30 minuter 

 

Activity 3.  Algorithmic problem solving 

3.1. Lecture: 1 hour 30 min 
3.2. Exercises: 60 min 

Total: 2 hours 30 minuter 

 

Activity 4.  Complexity or witch algorithm is better 

2.1. Lecture: 1 hour 30 min 
2.2. Exercises: 60 min 

Total: 2 hours 30 minuter 

 

Activity 5.  Ethical issues with algorithms 

2.1. Lecture: 1 hour 30 min 
2.2. Exercises: 60 min 

Total: 2 hours 30 minuter 

   



 Contribution to the learning outcomes 
Learning outcomes Assessment methods 

Understand the PRADA CT-model Activity 1.2.1 analyse a word problem using 
CT to devise an algorithm 

The algorithmic nature of mathematical 
procedures 

Activity 1.2.2 convert a procedure to an 
algorithm and Activity 1.2.3 create an 
mathematical algorithm 

  

 Activity 1: Introduction to Computational Thinking and 
Algorithms 

The aim of this activity is to introduce the student to Computational Thinking (CT) and how to use it to 
create algorithms. Mathematical procedures are used as example of common algorithms. 

[The text in this chapter is based on a part “Educational environments for CT: design and aspects of 
integration” -module authored by Peter Larsson Ashok Veerasamy of University of Turku which were 
created as a part of TeaEdu4CT Erasmus project. The original module is licensed under CC-BY 4.0 and it 
has been modified to fit the purpose of the current text.] 

 

Lecture 1.1 
 

   1.1.1 Computational Thinking 
The PRADA model (Dong et al., 2019) for Computational Thinking (CT) is devised to be a practical way to 
integrate computational thinking in K-12 education. The aim was to give an understandable picture what 
computational thinking is. The PRADA acronym consists of Pattern Recognition, Abstraction, Decomposition 
and Algorithms.  

PRADA model (Dong et al., 2019): 

 Pattern Recognition observing and identifying patterns, trends, and regularities in data, processes, 
or problems 

 Abstraction identifying the general principles and properties that are important and relevant to the 
problem 

 Decomposition breaking down data, processes, or problems into meaningful smaller, manageable 
parts 

 Algorithms developing step by step instructions for solving [a problem] and similar problems 

To recognise a pattern is to use our senses and knowledge to notice that something is recurring or 
repeating in a systematic way.  In mathematics, patterns (Devlin, 1994; Kvasz, 2019) describe the core 
concepts of a subfield of mathematics by using a small set of facts and rules. From these facts and rules one 
can derive logically all the other concepts of the field (Devlin, 2012). In computer science (CS) context we 
use patterns to make explicit the abstract mathematical concepts we are using in our computations. 
Technically patterns are about controlling the execution of a computer. The execution can have as a goal 



calculating (called computing in CS) some mathematical result or getting the computer to do something. In 
both mathematical and technical view, the first step towards a solution is to recognize the patterns that 
frame a problem.  

We can use mathematics as an example of pattern since it can be said to be the science of patterns. 
Mathematical patterns can be described as the language we use when we talk about mathematics or 
mathematical properties of some object of our attention. Without the language, we wouldn’t be able to 
refer to the objects of mathematics and their properties. The mathematical objects and their relationships 
form the pattern. Given a problem we can use the patterns to recognize if a subfield of mathematics would 
help in solving it. The pattern is a basis for our calculations and gives us the vocabulary to discuss about the 
mathematical field. Here we use mathematical theory of numbers better known as arithmetic (see Figure 
1.1). to illustrate a mathematical pattern. 

 

Figure 1.1. Addition, multiplication, subtraction, and division of arithmetic can be visualized to show quantitative 
patterns related to the symbolic operations. 

When we use a pattern as a representative for the original object of our attention then it is an abstraction. 
Patterns of mathematics, science, engineering, and technology are examples of abstractions. The 
mathematical objects don’t exist in reality, but instead they define regularities that we can use to make 
sense of our observations. Science uses mathematical models to make exact description of the phenomena 
of interest. Since a scientific model is usually a combination of basic mathematical equations and is named 
after the phenomena depicted, we can say that the model is on a higher abstraction level than plain 
mathematics. In engineering and technology, we use modularity to handle complexity. The name of the 
modules are abstractions that often describe the function or purpose of a part of a technical structure. In 
general, to abstract something is to leave out details or group things that are related under a descriptive 
label. 

Mathematics, science, and engineering/technology all employ abstractions. Abstraction is also central 
concept in CS (Kramer, 2007) and therefore also in CT (Wing, 2006). However, CS/CT requires thinking on 
multiple levels of abstraction, often two levels at the same time. One example of levels of abstraction used 
in CS education context is a four-level hierarchy by Perrenet et al. (2005): problem, object, program, and 
execution (see list below). The levels in the hierarchy are describing different interpretations of an 
algorithm in programming. At the problem level an algorithm is the change required from inputs to 
outputs. The inputs are based on the patterns that frame the problem. Object level is thinking about the 
general steps of the algorithm that are needed to transform the inputs to the outputs. On a program level 



the algorithm is implemented in a programming language. The programming language is a high-level 
description of the operation of a computer or a computational model. The execution level is the physical 
operation of the computer. Here we have taken the steps from a pattern that is in the context of the 
problem area to defining an algorithm to solve the problem and its solution as a program executable on a 
computer. CT is the ability to perform this process. 

Abstraction levels of algorithms Perrenet et al. (2005): 

 Problem level: change from inputs to outputs 
 Object level: algorithm (high-level) description 
 Program level: implementation of the algorithm in a programming language 
 Execution level: the running of the machine 

Decomposition is about how to break down a problem into manageable parts. In CT context the aim is to 
find an algorithm that would solve the problem. Before decomposition, a problem is only known as a black 
box with inputs, outputs, and possible relationships to other problems. The black box depicts the 
innerworkings of the problem that are yet unknown. To find out the inner function, the problem is broken 
down into multiple subproblems. Each subproblem can be treated as a problem that needs to be unpacked 
to its component parts. Finally, an atomic level is reached where there are no more subproblems. A 
solution can be devised based on the identified components of the problem. One can approach the solution 
top-down, first handling the top-level problems, or bottom-up, first solving the atomic problems. 

The decomposition process contains two kind of actions (Rich et al., 2019). The first, substantive 
decomposition, is to differentiate and categorize the parts (subproblems) of the problem. The second, 
relational decomposition, is to find relationships between the subproblems. In substantive decomposition 
one must choose a principle that is used to break the problem in to parts. The principle is dependent on the 
problem statement and context. The separate subproblems provide information that wasn’t accessible 
while combined. When subproblems have been identified one can start to assign relations between them. 
Prior to this phase there didn’t exist a relation between the problems. Subproblems and their relationships 
form the pattern of the problem. An example from arithmetic would be the addition of two natural 
numbers. The relationship between the numbers can be visualized as the difference between positions on a 
number line. To add one number to another one would take the first number’s position as a start and 
calculate an amount equal to the second numbers position forward. The number of the new position is the 
result of the addition. 

In engineering, CS, design, and other fields, problems are frequently broken down by their functions (Rich 
et al., 2019). Functional decomposition is a result of the combination of substantive and relational 
processes. The key to make the decomposition functional is the relationship between subproblems. If the 
relationship is functional then some operation happens between two subproblems. A functional 
relationship in arithmetic could be addition, subtraction, multiplication or division. Example of the use of 
arithmetic functions in other fields of mathematics are the quadratic equation, the greatest common 
divisor and the Pythagorean Theorem. In CS an algorithm expressed in an imperative type (commanding 
the computer) of programming language would employ control structures that form the relationship 
between solutions to subproblems. Breaking down the problem using substantial and relational 
decomposition helps to gain new meaningful information to devise a (algorithmic) solution (Rich et al., 
2019). 

Algorithms originated in mathematics and are an important part of it although they are not emphasised. 
Sometimes any step-by-step process is described as an algorithm, but it is not the process, but the 
definition that is the algorithm. The definition has to describe the process with mathematical rigour. CS 
relies on algorithms since its operating principle is based on a computational model. Everything that the 
computer does is a calculation (called computation), but for the machine to know what to do every action 
has to be explicit. In a CS context an algorithm can be defined as “…a finite, abstract, effective, compound 



control structure, imperatively given, accomplishing a given purpose under given provisions.” (Hill, 2016, p. 
47). 

To decompose Robin K. Hill’s (2016) definition of an algorithm (see above) one can start by picturing an 
algorithm as a definition of a process consisting of discrete steps. An algorithm describes a finite process 
that must come to an end. The description is abstract and uses only the features needed to depict the 
change intended. In addition to finiteness the algorithm must be effective which means that the resources 
and time used must be reasonable. An algorithm is a combination of different control structures that guide 
the change of its values and finally ends in a result. Control structures and changes to the variables are 
presented as imperatives using commands. The algorithm should fulfil its intended purpose and nothing 
else. The algorithm should behave correctly with any input in a specified range. 

CT can be interpreted as the mental skills needed to automate the execution of an algorithm (Denning, 
2017b).  According to the famous computer scientist Donald Knuth (1975; 1985) Computer Science (CS) 
share algorithms with mathematics. The difference is that in CS we can go beyond what is possible or 
feasible for a human to compute. However, when we design algorithms in CS, we use mathematics to 
establish rigour and to calculate if it is possible to execute the algorithm with available computer resources. 
Since the computer is based on a mathematical model of computation every program is also an algorithm. 
The world algorithm is however reserved for a generalised solution for a particular type of problem. 

 

   1.1.2 Algorithms in mathematics 
Algorithms can be introduced by examining the general structure of mathematical procedures since they 
are based on algorithms. In mathematics, the purpose of an algorithm is to help solve a more complex 
calculation by dividing it into simpler calculations. Examples of this are paper and pencil calculations, 
various formulas with instructions such as the Pythagorean theorem or quadratic equation solution 
formula, and the use of a straight edge and a compass in geometry. The examples above and algorithms in 
general are only applicable to a particular type of problem.  We use our procedural knowledge to execute 
the algorithms and often we perform them without conscious thinking. However, if would formalise the 
procedures we would notice that they could be described by calculations performed sequentially, 
iteratively, and conditionally. 

Each algorithm follows a sequential structure and there must be two or more steps (see Figure 1.2). One 
step would only represent the calculation, so it is not valid as an algorithm. Steps can include calculations or 
other algorithmic structures. They can repeat things they have done before or make new ones. Towards the 
end of the algorithm, the results obtained earlier are often compiled. 

 

 

Figure 1.2 A visual multiplication algorithm in which the blue line represents the number one and the orange the 
number ten. The figure is formed from combinations of blue and orange lines. For multiplication, the first number is 
shown in vertical lines and the second number in horizontal lines. The result is obtained by summation of the values 



represented by the intersecting lines. The value of an intersection is a multiplication of the values the lines represent. 
The algorithm proceeds sequentially first representing the first and second number as vertical and horizonal lines, then 
counting the ones represented by intersecting blue lines, then the tens where the blue and orange lines intersect, and 
finally the hundreds where the two orange lines intersect. 

In an iterative structure, a set of successive steps are performed multiple times until some condition is 
satisfied (see Figure 1.3). This saves you from writing a similar sequence of steps multiple times. By 
selecting the iteration end conditions appropriately, e.g., as long as there are numbers to calculate or until 
a value of variable reaches a pre-defined limit, general-purpose algorithms can be created. 

 

 

Figure 1.3. Multiplying two two-digit numbers with pen and paper is an example of an algorithm that utilizes 
repetition. First, the first number is multiplied by the less significant number of the second number and then by the 
more significant number. In both cases, the procedure is similar, and in this example, the calculations do not require a 
memory number. The result is two numbers that are finally added together. 

The conditional structure allows to define alternative operation depending on the value at hand (see Figure 
1.4). The conditional structure may be related to executing a single operation, a choice between two 
operations, or it may divide the algorithm into two parallel branches. In complex cases the conditional 
structure can contain several options. 

 

 



Figure 1.4. When multiplying two numbers using the pen and paper method the carry must be taken into account. That 
is, if the result of multiplying two digits is more than ten, then the tens are written above the next digit as a carry or if 
the digits run out over the place where the next digit would be. After the multiplication of two digits the carry is added. 
The use of a carry can be considered a condition that only takes effect when the multiplication of two digits result in 
tenths. 

The algorithmic structures are simple and when they contain familiar calculations the following of the 
algorithm is straight forward. However, to design algorithms is a bigger challenge. Two cases can be 
distinguished: an algorithm for a particular problem and a general algorithm for problems of the same type. 
For general algorithms, it must be ensured that the algorithm ends in each case and that the solution is 
correct in all cases. In this module algorithms of both types are introduced. 

 

Exercises 1.2 

   

1.2.1 Find the algorithm in a word problem using CT 
Select a word problem (related to mathematics or a topic where mathematics is applied) which is at a level 
suitable for your students. The aim is to devise an algorithm that solves the problem. The algorithm should 
be complete and described in a level of detail so that a student could execute it without resorting to 
outside resources. Use the sequence, iteration, and conditional structures when you describe the order of 
mathematical operations in the algorithm.  

Write small essay where you describe the problem, how you created the algorithm using the PRADA CT-
model (see the steps below) and the algorithm you created.  

PRADA CT model: 

1. Pattern recognition 
2. Abstraction 
3. Decomposition 
4. Algorithm 

 

1.2.2 Convert a mathematical procedure to an algorithm  
Choose a mathematical procedure (for instance an equation based on the Pythagorean theorem) which is 
at a level suitable for your students.  

Write an algorithm using mathematical operations and the algorithmic structures (sequence, iteration, and 
conditional). The algorithm should be able to handle the general cases and if possible, also more special 
ones. If it is not possible to cover all cases document which kind are an exception and why they cannot be 
covered. 

The algorithm should be complete and described in a level of detail so that a student could execute it 
without resorting to outside resources.   
 

1.2.3 Create an algorithm to guess a number in a range 
Your task is to devise an algorithm to guess a number between two natural numbers. You can ask any 
question except directly what the number is. You can ask again if your guess is not correct. 



The solution should be such that it can be found by just repeating the question and required mathematical 
operations.  

Write the algorithm using mathematical operations, algorithmic structures and a question which can 
contain variables to refer to the mathematical operations. 
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